Show commands: Magma
Group invariants
| Abstract group: | $C_2^7:C_6$ |
| |
| Order: | $768=2^{8} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $24$ |
| |
| Transitive number $t$: | $2453$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,7,16)(2,8,15)(3,14,20,5,11,22)(4,13,19,6,12,21)(9,17,24)(10,18,23)$, $(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$, $(1,13)(2,14)(3,16,6,18)(4,15,5,17)(7,21,10,20)(8,22,9,19)(11,23)(12,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $3$: $C_3$ $4$: $C_2^2$ x 7 $6$: $C_6$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ $12$: $A_4$, $C_6\times C_2$ x 7 $16$: $D_4\times C_2$ $24$: $A_4\times C_2$ x 7, $D_4 \times C_3$ x 2, 24T3 $48$: $C_2^2 \times A_4$ x 7, 24T38 $96$: $C_2^4:C_6$, 12T51 x 2, 24T135 $192$: 12T87 x 3, 24T411 $384$: 12T134 x 2, 24T1078 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: $D_{4}$
Degree 6: $C_6$
Degree 8: None
Degree 12: $D_4 \times C_3$, 12T87, 12T134
Low degree siblings
24T2447 x 32, 24T2448 x 16, 24T2451 x 16, 24T2453 x 15, 24T2454 x 8, 24T2457 x 32, 24T2458 x 16, 24T2461 x 8, 24T2462 x 16, 24T2504 x 16, 24T2505 x 16, 32T34747 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
56 x 56 character table
Regular extensions
Data not computed