Show commands: Magma
Group invariants
| Abstract group: | $C_2^5:S_4$ |
| |
| Order: | $768=2^{8} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $24$ |
| |
| Transitive number $t$: | $2199$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,12)(2,11)(3,10,4,9)(5,15)(6,16)(7,13,8,14)(17,19,18,20)(21,24,22,23)$, $(1,24,9,8,18,15)(2,23,10,7,17,16)(3,21,11,5,20,14)(4,22,12,6,19,13)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $24$: $S_4$ x 3 $48$: $S_4\times C_2$ x 3 $96$: $V_4^2:S_3$ $192$: $V_4^2:(S_3\times C_2)$ x 2, 12T100 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 8: None
Degree 12: $D_6$
Low degree siblings
16T1068 x 2, 24T1632 x 2, 24T1639 x 4, 24T2199, 24T2248 x 2, 24T2355 x 2, 24T2357 x 4, 24T2365 x 2, 24T2373 x 4, 24T2378 x 2, 24T2382 x 2, 24T2392 x 2, 24T2405 x 8, 24T2406 x 4, 24T2407 x 8, 24T2408 x 4, 24T2417 x 4, 24T2419 x 2, 24T2421 x 4, 24T2423 x 2, 24T2426 x 2, 24T2429 x 2, 32T34622 x 4, 32T34628Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8},1^{8}$ | $3$ | $2$ | $8$ | $( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
| 2B | $2^{8},1^{8}$ | $3$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(15,16)(19,20)(21,22)$ |
| 2C | $2^{8},1^{8}$ | $3$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(11,12)(13,14)(17,18)(23,24)$ |
| 2D | $2^{12}$ | $4$ | $2$ | $12$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,16)(10,15)(11,13)(12,14)(17,23)(18,24)(19,22)(20,21)$ |
| 2E | $2^{4},1^{16}$ | $6$ | $2$ | $4$ | $( 1, 2)( 7, 8)( 9,10)(15,16)$ |
| 2F | $2^{8},1^{8}$ | $6$ | $2$ | $8$ | $( 3, 4)( 7, 8)( 9,10)(13,14)(17,18)(19,20)(21,22)(23,24)$ |
| 2G | $2^{4},1^{16}$ | $6$ | $2$ | $4$ | $( 1, 2)( 5, 6)(17,18)(21,22)$ |
| 2H | $2^{4},1^{16}$ | $6$ | $2$ | $4$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| 2I | $2^{8},1^{8}$ | $6$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(21,22)(23,24)$ |
| 2J | $2^{6},1^{12}$ | $12$ | $2$ | $6$ | $( 1, 2)( 7, 8)( 9,10)(13,14)(21,22)(23,24)$ |
| 2K | $2^{12}$ | $12$ | $2$ | $12$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,15)(10,16)(11,13)(12,14)(17,23)(18,24)(19,21)(20,22)$ |
| 2L | $2^{6},1^{12}$ | $12$ | $2$ | $6$ | $( 5, 6)( 7, 8)(11,12)(13,14)(19,20)(23,24)$ |
| 2M | $2^{12}$ | $24$ | $2$ | $12$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,20)(10,19)(11,18)(12,17)(13,24)(14,23)(15,22)(16,21)$ |
| 2N | $2^{12}$ | $24$ | $2$ | $12$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,21)(10,22)(11,24)(12,23)(13,18)(14,17)(15,19)(16,20)$ |
| 3A | $3^{8}$ | $128$ | $3$ | $16$ | $( 1,10,18)( 2, 9,17)( 3,11,20)( 4,12,19)( 5,14,22)( 6,13,21)( 7,15,24)( 8,16,23)$ |
| 4A | $4^{4},2^{4}$ | $12$ | $4$ | $16$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,15,10,16)(11,14,12,13)(17,24,18,23)(19,21,20,22)$ |
| 4B | $4^{4},2^{4}$ | $12$ | $4$ | $16$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,16,10,15)(11,14,12,13)(17,24,18,23)(19,22,20,21)$ |
| 4C | $4^{4},2^{4}$ | $24$ | $4$ | $16$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,19,10,20)(11,17)(12,18)(13,23)(14,24)(15,21,16,22)$ |
| 4D | $4^{4},2^{4}$ | $24$ | $4$ | $16$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,22,10,21)(11,23)(12,24)(13,17)(14,18)(15,20,16,19)$ |
| 4E | $4^{4},2^{4}$ | $24$ | $4$ | $16$ | $( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,15,10,16)(11,13,12,14)(17,23,18,24)(19,22,20,21)$ |
| 4F | $4^{4},2^{4}$ | $24$ | $4$ | $16$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,22,10,21)(11,23,12,24)(13,18,14,17)(15,19,16,20)$ |
| 4G | $4^{4},2^{4}$ | $24$ | $4$ | $16$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,21)(10,22)(11,24,12,23)(13,17,14,18)(15,20)(16,19)$ |
| 4H | $4^{4},2^{4}$ | $24$ | $4$ | $16$ | $( 1,11, 2,12)( 3,10, 4, 9)( 5,16, 6,15)( 7,13, 8,14)(17,20)(18,19)(21,23)(22,24)$ |
| 4I | $4^{4},2^{4}$ | $24$ | $4$ | $16$ | $( 1,11)( 2,12)( 3, 9, 4,10)( 5,15, 6,16)( 7,13)( 8,14)(17,19,18,20)(21,23,22,24)$ |
| 4J | $4^{4},2^{4}$ | $48$ | $4$ | $16$ | $( 1,11)( 2,12)( 3,10, 4, 9)( 5,15)( 6,16)( 7,14, 8,13)(17,20,18,19)(21,23,22,24)$ |
| 4K | $4^{2},2^{8}$ | $48$ | $4$ | $14$ | $( 1,21, 2,22)( 3,23)( 4,24)( 5,18, 6,17)( 7,20)( 8,19)( 9,14)(10,13)(11,16)(12,15)$ |
| 4L | $4^{2},2^{8}$ | $48$ | $4$ | $14$ | $( 1,12)( 2,11)( 3,10)( 4, 9)( 5,16, 6,15)( 7,14, 8,13)(17,20)(18,19)(21,24)(22,23)$ |
| 4M | $4^{4},2^{4}$ | $48$ | $4$ | $16$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,21,10,22)(11,24,12,23)(13,18)(14,17)(15,19)(16,20)$ |
| 6A | $6^{4}$ | $128$ | $6$ | $20$ | $( 1,24,10, 7,18,15)( 2,23, 9, 8,17,16)( 3,21,11, 6,20,13)( 4,22,12, 5,19,14)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 3A | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 6A | ||
| Size | 1 | 3 | 3 | 3 | 4 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 24 | 24 | 128 | 12 | 12 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 48 | 48 | 48 | 48 | 128 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 2A | 2A | 2B | 2B | 2A | 2A | 2C | 2A | 2C | 2F | 2G | 2H | 2I | 3A | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 1A | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 2D | |
| Type | |||||||||||||||||||||||||||||||
| 768.1090070.1a | R | ||||||||||||||||||||||||||||||
| 768.1090070.1b | R | ||||||||||||||||||||||||||||||
| 768.1090070.1c | R | ||||||||||||||||||||||||||||||
| 768.1090070.1d | R | ||||||||||||||||||||||||||||||
| 768.1090070.2a | R | ||||||||||||||||||||||||||||||
| 768.1090070.2b | R | ||||||||||||||||||||||||||||||
| 768.1090070.3a | R | ||||||||||||||||||||||||||||||
| 768.1090070.3b | R | ||||||||||||||||||||||||||||||
| 768.1090070.3c | R | ||||||||||||||||||||||||||||||
| 768.1090070.3d | R | ||||||||||||||||||||||||||||||
| 768.1090070.3e | R | ||||||||||||||||||||||||||||||
| 768.1090070.3f | R | ||||||||||||||||||||||||||||||
| 768.1090070.3g | R | ||||||||||||||||||||||||||||||
| 768.1090070.3h | R | ||||||||||||||||||||||||||||||
| 768.1090070.3i | R | ||||||||||||||||||||||||||||||
| 768.1090070.3j | R | ||||||||||||||||||||||||||||||
| 768.1090070.3k | R | ||||||||||||||||||||||||||||||
| 768.1090070.3l | R | ||||||||||||||||||||||||||||||
| 768.1090070.6a | R | ||||||||||||||||||||||||||||||
| 768.1090070.6b | R | ||||||||||||||||||||||||||||||
| 768.1090070.6c | R | ||||||||||||||||||||||||||||||
| 768.1090070.6d | R | ||||||||||||||||||||||||||||||
| 768.1090070.6e | R | ||||||||||||||||||||||||||||||
| 768.1090070.6f | R | ||||||||||||||||||||||||||||||
| 768.1090070.6g | R | ||||||||||||||||||||||||||||||
| 768.1090070.6h | R | ||||||||||||||||||||||||||||||
| 768.1090070.6i | R | ||||||||||||||||||||||||||||||
| 768.1090070.6j | R | ||||||||||||||||||||||||||||||
| 768.1090070.12a | R | ||||||||||||||||||||||||||||||
| 768.1090070.12b | R |
Regular extensions
Data not computed