Show commands: Magma
Group invariants
Abstract group: | $C_2^9.C_3^4:Q_8$ |
| |
Order: | $331776=2^{12} \cdot 3^{4}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $19561$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,21,2,22)(3,19,5,24)(4,20,6,23)(7,15,12,17,8,16,11,18)(9,13)(10,14)$, $(1,13)(2,14)(3,18,5,15)(4,17,6,16)(7,19,9,21,8,20,10,22)(11,23,12,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$, $C_4\times C_2$, $Q_8$ $16$: $C_4:C_4$ $72$: $C_3^2:Q_8$ x 4 $144$: 24T258 x 4 $648$: 12T174 $1296$: 24T2869 $165888$: 16T1898 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: None
Degree 8: None
Degree 12: 12T174
Low degree siblings
24T19560, 32T2267402, 32T2267403, 36T28082 x 2, 36T28084 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed