Properties

Label 24T1868
24T1868 1 7 1->7 9 1->9 2 8 2->8 10 2->10 3 4 3->4 6 3->6 12 3->12 5 4->5 11 4->11 5->3 5->7 16 5->16 6->4 6->8 15 6->15 7->2 7->6 14 7->14 8->1 8->5 13 8->13 9->4 18 9->18 23 9->23 10->3 17 10->17 24 10->24 11->1 19 11->19 22 11->22 12->2 20 12->20 21 12->21 13->5 13->20 13->24 14->6 14->19 14->23 15->7 15->18 15->22 16->8 16->17 16->21 17->22 18->21 19->24 20->23 21->11 21->19 22->12 22->20 23->10 23->17 24->9 24->18
Degree $24$
Order $768$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_2^3:C_4\times S_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(24, 1868);
 

Group invariants

Abstract group:  $C_2^3:C_4\times S_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $768=2^{8} \cdot 3$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $24$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $1868$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(3,4)(5,7,6,8)(9,23,10,24)(11,22,12,21)(13,20)(14,19)(15,18)(16,17)$, $(1,7,2,8)(3,6,4,5)(9,18)(10,17)(11,19)(12,20)(13,24)(14,23)(15,22)(16,21)$, $(1,9,4,11)(2,10,3,12)(5,16,8,13)(6,15,7,14)(17,22,20,23)(18,21,19,24)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$4$:  $C_4$ x 4, $C_2^2$ x 7
$6$:  $S_3$
$8$:  $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$
$12$:  $D_{6}$ x 3
$16$:  $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$
$24$:  $S_4$, $S_3 \times C_2^2$, $S_3 \times C_4$ x 2
$32$:  $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$
$48$:  $S_4\times C_2$ x 3, 12T28 x 2, 24T27
$64$:  16T76
$96$:  12T48, 12T53 x 2, 24T146
$192$:  12T86 x 2, 24T337, 24T397
$384$:  24T1070

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $S_3$

Degree 4: $D_{4}$

Degree 6: $D_{6}$

Degree 8: None

Degree 12: 12T28

Low degree siblings

24T1719 x 2, 24T1721 x 2, 24T1868 x 3, 32T35066 x 4, 32T35073 x 2, 32T35194 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

55 x 55 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed