Show commands: Magma
Group invariants
| Abstract group: | $C_2^3:C_4\times S_4$ |
| |
| Order: | $768=2^{8} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $24$ |
| |
| Transitive number $t$: | $1868$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(3,4)(5,7,6,8)(9,23,10,24)(11,22,12,21)(13,20)(14,19)(15,18)(16,17)$, $(1,7,2,8)(3,6,4,5)(9,18)(10,17)(11,19)(12,20)(13,24)(14,23)(15,22)(16,21)$, $(1,9,4,11)(2,10,3,12)(5,16,8,13)(6,15,7,14)(17,22,20,23)(18,21,19,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $6$: $S_3$ $8$: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ $12$: $D_{6}$ x 3 $16$: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ $24$: $S_4$, $S_3 \times C_2^2$, $S_3 \times C_4$ x 2 $32$: $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$ $48$: $S_4\times C_2$ x 3, 12T28 x 2, 24T27 $64$: 16T76 $96$: 12T48, 12T53 x 2, 24T146 $192$: 12T86 x 2, 24T337, 24T397 $384$: 24T1070 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $D_{6}$
Degree 8: None
Degree 12: 12T28
Low degree siblings
24T1719 x 2, 24T1721 x 2, 24T1868 x 3, 32T35066 x 4, 32T35073 x 2, 32T35194 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
55 x 55 character table
Regular extensions
Data not computed