Show commands: Magma
Group invariants
Abstract group: | $C_3^3:D_{12}$ |
| |
Order: | $648=2^{3} \cdot 3^{4}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $1521$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $6$ |
| |
Generators: | $(1,22)(2,21)(3,4)(5,18)(6,17)(7,8)(9,14)(10,13)(11,20)(12,19)(15,24)(16,23)$, $(1,3)(2,4)(5,24,21,8,13,16)(6,23,22,7,14,15)(9,19)(10,20)(11,17)(12,18)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 2 $8$: $D_{4}$ $12$: $D_{6}$ x 2 $24$: $D_{12}$, $(C_6\times C_2):C_2$ $36$: $S_3^2$ $72$: $C_3^2:D_4$, 12T38 $216$: 12T116, 12T118 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 6: None
Degree 8: $D_4$
Degree 12: 12T169
Low degree siblings
12T169 x 2, 18T210 x 2, 24T1521, 24T1533, 36T1105 x 2, 36T1106 x 2, 36T1107 x 2, 36T1153, 36T1154, 36T1160, 36T1167, 36T1173, 36T1190 x 2, 36T1195 x 2, 36T1225 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12}$ | $9$ | $2$ | $12$ | $( 1, 5)( 2, 6)( 3,24)( 4,23)( 7,12)( 8,11)( 9,13)(10,14)(15,20)(16,19)(17,21)(18,22)$ |
2B | $2^{12}$ | $18$ | $2$ | $12$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 5, 8)( 6, 7)(13,24)(14,23)(15,22)(16,21)(17,19)(18,20)$ |
2C | $2^{12}$ | $54$ | $2$ | $12$ | $( 1, 2)( 3, 7)( 4, 8)( 5,14)( 6,13)( 9,18)(10,17)(11,23)(12,24)(15,19)(16,20)(21,22)$ |
3A | $3^{8}$ | $2$ | $3$ | $16$ | $( 1,17, 9)( 2,18,10)( 3,11,19)( 4,12,20)( 5,21,13)( 6,22,14)( 7,15,23)( 8,16,24)$ |
3B | $3^{8}$ | $2$ | $3$ | $16$ | $( 1,17, 9)( 2,18,10)( 3,19,11)( 4,20,12)( 5,21,13)( 6,22,14)( 7,23,15)( 8,24,16)$ |
3C | $3^{4},1^{12}$ | $4$ | $3$ | $8$ | $( 3,19,11)( 4,20,12)( 7,15,23)( 8,16,24)$ |
3D | $3^{8}$ | $4$ | $3$ | $16$ | $( 1, 9,17)( 2,10,18)( 3,11,19)( 4,12,20)( 5,21,13)( 6,22,14)( 7,23,15)( 8,24,16)$ |
3E | $3^{4},1^{12}$ | $4$ | $3$ | $8$ | $( 3,11,19)( 4,12,20)( 7,15,23)( 8,16,24)$ |
3F1 | $3^{4},1^{12}$ | $4$ | $3$ | $8$ | $( 3,11,19)( 4,12,20)( 5,21,13)( 6,22,14)$ |
3F-1 | $3^{4},1^{12}$ | $4$ | $3$ | $8$ | $( 3,19,11)( 4,20,12)( 5,13,21)( 6,14,22)$ |
3G | $3^{8}$ | $8$ | $3$ | $16$ | $( 1,17, 9)( 2,18,10)( 3,11,19)( 4,12,20)( 5,13,21)( 6,14,22)( 7,15,23)( 8,16,24)$ |
3H | $3^{4},1^{12}$ | $8$ | $3$ | $8$ | $( 5,21,13)( 6,22,14)( 7,23,15)( 8,24,16)$ |
3I | $3^{6},1^{6}$ | $8$ | $3$ | $12$ | $( 1, 9,17)( 2,10,18)( 3,11,19)( 4,12,20)( 5,13,21)( 6,14,22)$ |
3J | $3^{6},1^{6}$ | $8$ | $3$ | $12$ | $( 1, 9,17)( 2,10,18)( 5,13,21)( 6,14,22)( 7,23,15)( 8,24,16)$ |
3K | $3^{2},1^{18}$ | $8$ | $3$ | $4$ | $( 1, 9,17)( 2,10,18)$ |
3L1 | $3^{6},1^{6}$ | $8$ | $3$ | $12$ | $( 3,19,11)( 4,20,12)( 5,21,13)( 6,22,14)( 7,15,23)( 8,16,24)$ |
3L-1 | $3^{6},1^{6}$ | $8$ | $3$ | $12$ | $( 1,17, 9)( 2,18,10)( 3,19,11)( 4,20,12)( 7,15,23)( 8,16,24)$ |
4A | $4^{6}$ | $54$ | $4$ | $18$ | $( 1,15,13,12)( 2,16,14,11)( 3,18, 8, 6)( 4,17, 7, 5)( 9,23,21,20)(10,24,22,19)$ |
6A | $6^{4}$ | $18$ | $6$ | $20$ | $( 1,13,17, 5, 9,21)( 2,14,18, 6,10,22)( 3,16,11,24,19, 8)( 4,15,12,23,20, 7)$ |
6B | $6^{4}$ | $18$ | $6$ | $20$ | $( 1,21,17,13, 9, 5)( 2,22,18,14,10, 6)( 3,16,19, 8,11,24)( 4,15,20, 7,12,23)$ |
6C1 | $6^{4}$ | $18$ | $6$ | $20$ | $( 1, 3,17,11, 9,19)( 2, 4,18,12,10,20)( 5,24,21, 8,13,16)( 6,23,22, 7,14,15)$ |
6C-1 | $6^{4}$ | $18$ | $6$ | $20$ | $( 1, 3, 9,19,17,11)( 2, 4,10,20,18,12)( 5,24,13,16,21, 8)( 6,23,14,15,22, 7)$ |
6D | $6^{4}$ | $36$ | $6$ | $20$ | $( 1, 8, 9,24,17,16)( 2, 7,10,23,18,15)( 3, 5,11,21,19,13)( 4, 6,12,22,20,14)$ |
6E | $6^{2},2^{6}$ | $36$ | $6$ | $16$ | $( 1,21)( 2,22)( 3,16,11,24,19, 8)( 4,15,12,23,20, 7)( 5, 9)( 6,10)(13,17)(14,18)$ |
6F1 | $6^{2},2^{6}$ | $36$ | $6$ | $16$ | $( 1,16)( 2,15)( 3,13,11, 5,19,21)( 4,14,12, 6,20,22)( 7,10)( 8, 9)(17,24)(18,23)$ |
6F-1 | $6^{2},2^{6}$ | $36$ | $6$ | $16$ | $( 1,16)( 2,15)( 3,21,19, 5,11,13)( 4,22,20, 6,12,14)( 7,10)( 8, 9)(17,24)(18,23)$ |
6G | $6^{2},2^{6}$ | $108$ | $6$ | $16$ | $( 1, 2)( 3,23,19, 7,11,15)( 4,24,20, 8,12,16)( 5,14)( 6,13)( 9,18)(10,17)(21,22)$ |
12A1 | $12^{2}$ | $54$ | $12$ | $22$ | $( 1, 4,21,15,17,20,13, 7, 9,12, 5,23)( 2, 3,22,16,18,19,14, 8,10,11, 6,24)$ |
12A5 | $12^{2}$ | $54$ | $12$ | $22$ | $( 1,20, 5,15, 9, 4,13,23,17,12,21, 7)( 2,19, 6,16,10, 3,14,24,18,11,22, 8)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F1 | 3F-1 | 3G | 3H | 3I | 3J | 3K | 3L1 | 3L-1 | 4A | 6A | 6B | 6C1 | 6C-1 | 6D | 6E | 6F1 | 6F-1 | 6G | 12A1 | 12A5 | ||
Size | 1 | 9 | 18 | 54 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 54 | 18 | 18 | 18 | 18 | 36 | 36 | 36 | 36 | 108 | 54 | 54 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 3E | 3F-1 | 3F1 | 3G | 3H | 3I | 3J | 3K | 3L-1 | 3L1 | 2A | 3A | 3B | 3A | 3A | 3D | 3E | 3F1 | 3F-1 | 3C | 6B | 6B | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 4A | 2A | 2A | 2B | 2B | 2B | 2A | 2B | 2B | 2C | 4A | 4A | |
Type | |||||||||||||||||||||||||||||||
648.723.1a | R | ||||||||||||||||||||||||||||||
648.723.1b | R | ||||||||||||||||||||||||||||||
648.723.1c | R | ||||||||||||||||||||||||||||||
648.723.1d | R | ||||||||||||||||||||||||||||||
648.723.2a | R | ||||||||||||||||||||||||||||||
648.723.2b | R | ||||||||||||||||||||||||||||||
648.723.2c | R | ||||||||||||||||||||||||||||||
648.723.2d | R | ||||||||||||||||||||||||||||||
648.723.2e | R | ||||||||||||||||||||||||||||||
648.723.2f1 | R | ||||||||||||||||||||||||||||||
648.723.2f2 | R | ||||||||||||||||||||||||||||||
648.723.2g1 | C | ||||||||||||||||||||||||||||||
648.723.2g2 | C | ||||||||||||||||||||||||||||||
648.723.4a | R | ||||||||||||||||||||||||||||||
648.723.4b | R | ||||||||||||||||||||||||||||||
648.723.4c | R | ||||||||||||||||||||||||||||||
648.723.4d | R | ||||||||||||||||||||||||||||||
648.723.4e | R | ||||||||||||||||||||||||||||||
648.723.4f | R | ||||||||||||||||||||||||||||||
648.723.4g1 | C | ||||||||||||||||||||||||||||||
648.723.4g2 | C | ||||||||||||||||||||||||||||||
648.723.4h1 | C | ||||||||||||||||||||||||||||||
648.723.4h2 | C | ||||||||||||||||||||||||||||||
648.723.8a | R | ||||||||||||||||||||||||||||||
648.723.8b | R | ||||||||||||||||||||||||||||||
648.723.8c | R | ||||||||||||||||||||||||||||||
648.723.8d | R | ||||||||||||||||||||||||||||||
648.723.8e | R | ||||||||||||||||||||||||||||||
648.723.8f1 | C | ||||||||||||||||||||||||||||||
648.723.8f2 | C |
Regular extensions
Data not computed