Show commands: Magma
Group invariants
Abstract group: | $C_2^4:S_4$ |
| |
Order: | $384=2^{7} \cdot 3$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $1197$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,23)(2,24)(3,4)(5,6)(7,8)(9,10)(11,13)(12,14)(15,16)(17,18)(19,20)(21,22)$, $(1,2)(3,15)(4,16)(5,17)(6,18)(7,20)(8,19)(9,22)(10,21)(11,12)(13,14)(23,24)$, $(1,9,18)(2,10,17)(3,12,20)(4,11,19)(5,14,22)(6,13,21)(7,16,23)(8,15,24)$, $(3,19)(4,20)(5,21)(6,22)(7,16)(8,15)(9,18)(10,17)(11,12)(13,14)$, $(1,23)(2,24)(3,5)(4,6)(7,9)(8,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $C_2^3$ $12$: $D_{6}$ x 3 $24$: $S_4$, $S_3 \times C_2^2$ $48$: $S_4\times C_2$ x 3 $96$: 12T48 $192$: $V_4^2:(S_3\times C_2)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Degree 8: None
Degree 12: $C_2 \times S_4$, 12T111, 12T137
Low degree siblings
12T136 x 4, 12T137 x 4, 16T724 x 4, 24T1143 x 2, 24T1144 x 2, 24T1184 x 2, 24T1185 x 4, 24T1186 x 2, 24T1187 x 4, 24T1188 x 4, 24T1189 x 4, 24T1190 x 4, 24T1191 x 2, 24T1192 x 4, 24T1193 x 2, 24T1194 x 4, 24T1195 x 8, 24T1196 x 8, 24T1197 x 7, 24T1198 x 8, 32T9332 x 2, 32T9457 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12}$ | $1$ | $2$ | $12$ | $( 1,23)( 2,24)( 3, 5)( 4, 6)( 7, 9)( 8,10)(11,13)(12,14)(15,17)(16,18)(19,21)(20,22)$ |
2B | $2^{12}$ | $3$ | $2$ | $12$ | $( 1,23)( 2,24)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,13)(12,14)(15,16)(17,18)(19,20)(21,22)$ |
2C | $2^{8},1^{8}$ | $3$ | $2$ | $8$ | $( 3, 6)( 4, 5)( 7,10)( 8, 9)(15,18)(16,17)(19,22)(20,21)$ |
2D | $2^{12}$ | $4$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 9)( 8,10)(11,13)(12,14)(15,17)(16,18)(19,20)(21,22)(23,24)$ |
2E | $2^{6},1^{12}$ | $4$ | $2$ | $6$ | $( 1,24)( 2,23)( 7,10)( 8, 9)(15,18)(16,17)$ |
2F | $2^{8},1^{8}$ | $6$ | $2$ | $8$ | $( 1,13)( 2,14)( 7,21)( 8,22)( 9,19)(10,20)(11,23)(12,24)$ |
2G | $2^{12}$ | $6$ | $2$ | $12$ | $( 1,11)( 2,12)( 3,18)( 4,17)( 5,16)( 6,15)( 7,10)( 8, 9)(13,23)(14,24)(19,22)(20,21)$ |
2H | $2^{12}$ | $6$ | $2$ | $12$ | $( 1, 2)( 3,15)( 4,16)( 5,17)( 6,18)( 7,20)( 8,19)( 9,22)(10,21)(11,12)(13,14)(23,24)$ |
2I | $2^{12}$ | $6$ | $2$ | $12$ | $( 1,12)( 2,11)( 3,16)( 4,15)( 5,18)( 6,17)( 7, 9)( 8,10)(13,24)(14,23)(19,21)(20,22)$ |
2J | $2^{12}$ | $12$ | $2$ | $12$ | $( 1,24)( 2,23)( 3,19)( 4,20)( 5,21)( 6,22)( 7,17)( 8,18)( 9,15)(10,16)(11,12)(13,14)$ |
2K | $2^{12}$ | $12$ | $2$ | $12$ | $( 1, 2)( 3,21)( 4,22)( 5,19)( 6,20)( 7,15)( 8,16)( 9,17)(10,18)(11,14)(12,13)(23,24)$ |
2L | $2^{10},1^{4}$ | $12$ | $2$ | $10$ | $( 1,18)( 2,17)( 3,11)( 4,12)( 5,13)( 6,14)(15,24)(16,23)(19,20)(21,22)$ |
2M | $2^{12}$ | $12$ | $2$ | $12$ | $( 1,16)( 2,15)( 3,13)( 4,14)( 5,11)( 6,12)( 7, 9)( 8,10)(17,24)(18,23)(19,22)(20,21)$ |
3A | $3^{8}$ | $32$ | $3$ | $16$ | $( 1, 5,20)( 2, 6,19)( 3,22,23)( 4,21,24)( 7,14,18)( 8,13,17)( 9,12,16)(10,11,15)$ |
4A | $4^{4},2^{4}$ | $12$ | $4$ | $16$ | $( 1, 2)( 3,18, 6,15)( 4,17, 5,16)( 7,21,10,20)( 8,22, 9,19)(11,13)(12,14)(23,24)$ |
4B | $4^{4},2^{2},1^{4}$ | $12$ | $4$ | $14$ | $( 1,24)( 2,23)( 3,16, 6,17)( 4,15, 5,18)( 7,19,10,22)( 8,20, 9,21)$ |
4C | $4^{4},2^{4}$ | $12$ | $4$ | $16$ | $( 1,23)( 2,24)( 3, 8, 6, 9)( 4, 7, 5,10)(11,14)(12,13)(15,19,18,22)(16,20,17,21)$ |
4D | $4^{4},2^{2},1^{4}$ | $12$ | $4$ | $14$ | $( 3,10, 6, 7)( 4, 9, 5, 8)(11,12)(13,14)(15,21,18,20)(16,22,17,19)$ |
4E | $4^{4},2^{2},1^{4}$ | $12$ | $4$ | $14$ | $( 1, 4,24, 5)( 2, 3,23, 6)( 7, 9)( 8,10)(11,16,14,17)(12,15,13,18)$ |
4F | $4^{4},2^{2},1^{4}$ | $12$ | $4$ | $14$ | $( 1, 6,24, 3)( 2, 5,23, 4)(11,18,14,15)(12,17,13,16)(19,21)(20,22)$ |
4G | $4^{6}$ | $24$ | $4$ | $18$ | $( 1,11, 2,12)( 3,22,15, 9)( 4,21,16,10)( 5,20,17, 7)( 6,19,18, 8)(13,24,14,23)$ |
4H | $4^{6}$ | $24$ | $4$ | $18$ | $( 1,11, 2,12)( 3,10,18,20)( 4, 9,17,19)( 5, 8,16,22)( 6, 7,15,21)(13,24,14,23)$ |
4I | $4^{6}$ | $24$ | $4$ | $18$ | $( 1, 6,12,17)( 2, 5,11,18)( 3,13,16,24)( 4,14,15,23)( 7,21, 9,19)( 8,22,10,20)$ |
4J | $4^{6}$ | $24$ | $4$ | $18$ | $( 1,18,13, 4)( 2,17,14, 3)( 5,24,15,12)( 6,23,16,11)( 7,20, 9,22)( 8,19,10,21)$ |
6A | $6^{4}$ | $32$ | $6$ | $20$ | $( 1,19, 5, 2,20, 6)( 3,24,22, 4,23,21)( 7,16,14, 9,18,12)( 8,15,13,10,17,11)$ |
6B | $6^{2},3^{4}$ | $32$ | $6$ | $18$ | $( 1, 8,18,24, 9,15)( 2, 7,17,23,10,16)( 3,12,20)( 4,11,19)( 5,14,22)( 6,13,21)$ |
6C | $6^{4}$ | $32$ | $6$ | $20$ | $( 1,19, 5,23,21, 3)( 2,20, 6,24,22, 4)( 7,17,11, 9,15,13)( 8,18,12,10,16,14)$ |
Malle's constant $a(G)$: $1/6$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 3A | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | 6B | 6C | ||
Size | 1 | 1 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 32 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | 24 | 24 | 24 | 32 | 32 | 32 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 2C | 2C | 2C | 2C | 2C | 2C | 2H | 2H | 2I | 2I | 3A | 3A | 3A | |
3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 1A | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 2D | 2E | 2A | |
Type | |||||||||||||||||||||||||||||
384.17948.1a | R | ||||||||||||||||||||||||||||
384.17948.1b | R | ||||||||||||||||||||||||||||
384.17948.1c | R | ||||||||||||||||||||||||||||
384.17948.1d | R | ||||||||||||||||||||||||||||
384.17948.1e | R | ||||||||||||||||||||||||||||
384.17948.1f | R | ||||||||||||||||||||||||||||
384.17948.1g | R | ||||||||||||||||||||||||||||
384.17948.1h | R | ||||||||||||||||||||||||||||
384.17948.2a | R | ||||||||||||||||||||||||||||
384.17948.2b | R | ||||||||||||||||||||||||||||
384.17948.2c | R | ||||||||||||||||||||||||||||
384.17948.2d | R | ||||||||||||||||||||||||||||
384.17948.3a | R | ||||||||||||||||||||||||||||
384.17948.3b | R | ||||||||||||||||||||||||||||
384.17948.3c | R | ||||||||||||||||||||||||||||
384.17948.3d | R | ||||||||||||||||||||||||||||
384.17948.3e | R | ||||||||||||||||||||||||||||
384.17948.3f | R | ||||||||||||||||||||||||||||
384.17948.3g | R | ||||||||||||||||||||||||||||
384.17948.3h | R | ||||||||||||||||||||||||||||
384.17948.6a | R | ||||||||||||||||||||||||||||
384.17948.6b | R | ||||||||||||||||||||||||||||
384.17948.6c | R | ||||||||||||||||||||||||||||
384.17948.6d | R | ||||||||||||||||||||||||||||
384.17948.6e | R | ||||||||||||||||||||||||||||
384.17948.6f | R | ||||||||||||||||||||||||||||
384.17948.6g | R | ||||||||||||||||||||||||||||
384.17948.6h | R |
Regular extensions
Data not computed