Show commands: Magma
Group invariants
Abstract group: | $C_2^4:S_4$ |
| |
Order: | $384=2^{7} \cdot 3$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $1194$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,11,2,12)(3,22,18,8)(4,21,17,7)(5,20,16,10)(6,19,15,9)(13,24,14,23)$, $(1,2)(3,4)(5,6)(7,8)(9,10)(11,13)(12,14)(15,17)(16,18)(19,21)(20,22)(23,24)$, $(1,3,21,24,6,20)(2,4,22,23,5,19)(7,13,16,10,12,17)(8,14,15,9,11,18)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $C_2^3$ $12$: $D_{6}$ x 3 $24$: $S_4$, $S_3 \times C_2^2$ $48$: $S_4\times C_2$ x 3 $96$: 12T48 $192$: $V_4^2:(S_3\times C_2)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Degree 8: None
Degree 12: $C_2 \times S_4$, 12T137 x 2
Low degree siblings
12T136 x 4, 12T137 x 4, 16T724 x 4, 24T1143 x 2, 24T1144 x 2, 24T1184 x 2, 24T1185 x 4, 24T1186 x 2, 24T1187 x 4, 24T1188 x 4, 24T1189 x 4, 24T1190 x 4, 24T1191 x 2, 24T1192 x 4, 24T1193 x 2, 24T1194 x 3, 24T1195 x 8, 24T1196 x 8, 24T1197 x 8, 24T1198 x 8, 32T9332 x 2, 32T9457 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12}$ | $1$ | $2$ | $12$ | $( 1,24)( 2,23)( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)(15,18)(16,17)(19,22)(20,21)$ |
2B | $2^{4},1^{16}$ | $3$ | $2$ | $4$ | $( 1,24)( 2,23)(11,14)(12,13)$ |
2C | $2^{8},1^{8}$ | $3$ | $2$ | $8$ | $( 3, 6)( 4, 5)( 7,10)( 8, 9)(15,18)(16,17)(19,22)(20,21)$ |
2D | $2^{12}$ | $4$ | $2$ | $12$ | $( 1, 2)( 3, 5)( 4, 6)( 7, 8)( 9,10)(11,13)(12,14)(15,16)(17,18)(19,21)(20,22)(23,24)$ |
2E | $2^{12}$ | $4$ | $2$ | $12$ | $( 1,23)( 2,24)( 3, 5)( 4, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,21)(20,22)$ |
2F | $2^{12}$ | $6$ | $2$ | $12$ | $( 1,13)( 2,14)( 3, 4)( 5, 6)( 7,22)( 8,21)( 9,20)(10,19)(11,23)(12,24)(15,16)(17,18)$ |
2G | $2^{12}$ | $6$ | $2$ | $12$ | $( 1,11)( 2,12)( 3,17)( 4,18)( 5,15)( 6,16)( 7, 9)( 8,10)(13,23)(14,24)(19,21)(20,22)$ |
2H | $2^{12}$ | $6$ | $2$ | $12$ | $( 1, 2)( 3,15)( 4,16)( 5,17)( 6,18)( 7,20)( 8,19)( 9,22)(10,21)(11,12)(13,14)(23,24)$ |
2I | $2^{12}$ | $6$ | $2$ | $12$ | $( 1,11)( 2,12)( 3,16)( 4,15)( 5,18)( 6,17)( 7, 9)( 8,10)(13,23)(14,24)(19,21)(20,22)$ |
2J | $2^{10},1^{4}$ | $12$ | $2$ | $10$ | $( 1,23)( 2,24)( 3,19)( 4,20)( 5,21)( 6,22)( 7,17)( 8,18)( 9,15)(10,16)$ |
2K | $2^{12}$ | $12$ | $2$ | $12$ | $( 1, 2)( 3,22)( 4,21)( 5,20)( 6,19)( 7,16)( 8,15)( 9,18)(10,17)(11,14)(12,13)(23,24)$ |
2L | $2^{10},1^{4}$ | $12$ | $2$ | $10$ | $( 1, 6)( 2, 5)( 3,24)( 4,23)( 7, 8)( 9,10)(11,16)(12,15)(13,18)(14,17)$ |
2M | $2^{12}$ | $12$ | $2$ | $12$ | $( 1, 3)( 2, 4)( 5,23)( 6,24)( 7, 9)( 8,10)(11,17)(12,18)(13,15)(14,16)(19,22)(20,21)$ |
3A | $3^{8}$ | $32$ | $3$ | $16$ | $( 1,17, 9)( 2,18,10)( 3,19,12)( 4,20,11)( 5,21,14)( 6,22,13)( 7,23,15)( 8,24,16)$ |
4A | $4^{4},2^{2},1^{4}$ | $12$ | $4$ | $14$ | $( 3,16, 6,17)( 4,15, 5,18)( 7,19,10,22)( 8,20, 9,21)(11,14)(12,13)$ |
4B | $4^{4},2^{2},1^{4}$ | $12$ | $4$ | $14$ | $( 1,24)( 2,23)( 3,17, 6,16)( 4,18, 5,15)( 7,22,10,19)( 8,21, 9,20)$ |
4C | $4^{4},2^{4}$ | $12$ | $4$ | $16$ | $( 1,23)( 2,24)( 3,10, 6, 7)( 4, 9, 5, 8)(11,14)(12,13)(15,21,18,20)(16,22,17,19)$ |
4D | $4^{4},2^{2},1^{4}$ | $12$ | $4$ | $14$ | $( 1, 2)( 3, 7, 6,10)( 4, 8, 5, 9)(15,20,18,21)(16,19,17,22)(23,24)$ |
4E | $4^{4},2^{4}$ | $12$ | $4$ | $16$ | $( 1,15,24,18)( 2,16,23,17)( 3,13, 6,12)( 4,14, 5,11)( 7, 8)( 9,10)(19,22)(20,21)$ |
4F | $4^{4},2^{2},1^{4}$ | $12$ | $4$ | $14$ | $( 1,18,24,15)( 2,17,23,16)( 3,12, 6,13)( 4,11, 5,14)( 7, 9)( 8,10)$ |
4G | $4^{6}$ | $24$ | $4$ | $18$ | $( 1,11, 2,12)( 3,19,15, 8)( 4,20,16, 7)( 5,21,17,10)( 6,22,18, 9)(13,24,14,23)$ |
4H | $4^{6}$ | $24$ | $4$ | $18$ | $( 1,12, 2,11)( 3, 8,18,22)( 4, 7,17,21)( 5,10,16,20)( 6, 9,15,19)(13,23,14,24)$ |
4I | $4^{6}$ | $24$ | $4$ | $18$ | $( 1,17,11, 6)( 2,18,12, 5)( 3,24,16,14)( 4,23,15,13)( 7,20, 9,22)( 8,19,10,21)$ |
4J | $4^{6}$ | $24$ | $4$ | $18$ | $( 1, 6,14,16)( 2, 5,13,15)( 3,11,17,24)( 4,12,18,23)( 7,22, 9,20)( 8,21,10,19)$ |
6A | $6^{4}$ | $32$ | $6$ | $20$ | $( 1,10,17, 2, 9,18)( 3,14,19, 5,12,21)( 4,13,20, 6,11,22)( 7,16,23, 8,15,24)$ |
6B | $6^{4}$ | $32$ | $6$ | $20$ | $( 1,22, 6,23,20, 4)( 2,21, 5,24,19, 3)( 7,18,13, 8,17,14)( 9,16,11,10,15,12)$ |
6C | $6^{4}$ | $32$ | $6$ | $20$ | $( 1, 9,17,24, 8,16)( 2,10,18,23, 7,15)( 3,13,22, 6,12,19)( 4,14,21, 5,11,20)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 3A | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | 6B | 6C | ||
Size | 1 | 1 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 32 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | 24 | 24 | 24 | 32 | 32 | 32 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 2C | 2C | 2C | 2C | 2C | 2C | 2H | 2H | 2I | 2I | 3A | 3A | 3A | |
3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 1A | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 2D | 2E | 2A | |
Type | |||||||||||||||||||||||||||||
384.17948.1a | R | ||||||||||||||||||||||||||||
384.17948.1b | R | ||||||||||||||||||||||||||||
384.17948.1c | R | ||||||||||||||||||||||||||||
384.17948.1d | R | ||||||||||||||||||||||||||||
384.17948.1e | R | ||||||||||||||||||||||||||||
384.17948.1f | R | ||||||||||||||||||||||||||||
384.17948.1g | R | ||||||||||||||||||||||||||||
384.17948.1h | R | ||||||||||||||||||||||||||||
384.17948.2a | R | ||||||||||||||||||||||||||||
384.17948.2b | R | ||||||||||||||||||||||||||||
384.17948.2c | R | ||||||||||||||||||||||||||||
384.17948.2d | R | ||||||||||||||||||||||||||||
384.17948.3a | R | ||||||||||||||||||||||||||||
384.17948.3b | R | ||||||||||||||||||||||||||||
384.17948.3c | R | ||||||||||||||||||||||||||||
384.17948.3d | R | ||||||||||||||||||||||||||||
384.17948.3e | R | ||||||||||||||||||||||||||||
384.17948.3f | R | ||||||||||||||||||||||||||||
384.17948.3g | R | ||||||||||||||||||||||||||||
384.17948.3h | R | ||||||||||||||||||||||||||||
384.17948.6a | R | ||||||||||||||||||||||||||||
384.17948.6b | R | ||||||||||||||||||||||||||||
384.17948.6c | R | ||||||||||||||||||||||||||||
384.17948.6d | R | ||||||||||||||||||||||||||||
384.17948.6e | R | ||||||||||||||||||||||||||||
384.17948.6f | R | ||||||||||||||||||||||||||||
384.17948.6g | R | ||||||||||||||||||||||||||||
384.17948.6h | R |
Regular extensions
Data not computed