Show commands: Magma
Group invariants
| Abstract group: | $D_{22}$ |
| |
| Order: | $44=2^{2} \cdot 11$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $22$ |
| |
| Transitive number $t$: | $3$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,19)(2,20)(3,17)(4,18)(5,15)(6,16)(7,14)(8,13)(9,11)(10,12)$, $(1,21)(2,22)(3,19)(4,20)(5,18)(6,17)(7,15)(8,16)(9,14)(10,13)(11,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $22$: $D_{11}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: $D_{11}$
Low degree siblings
22T3, 44T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{22}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{11}$ | $1$ | $2$ | $11$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)$ |
| 2B | $2^{10},1^{2}$ | $11$ | $2$ | $10$ | $( 3,21)( 4,22)( 5,20)( 6,19)( 7,18)( 8,17)( 9,15)(10,16)(11,13)(12,14)$ |
| 2C | $2^{11}$ | $11$ | $2$ | $11$ | $( 1, 5)( 2, 6)( 3, 4)( 7,21)( 8,22)( 9,19)(10,20)(11,18)(12,17)(13,16)(14,15)$ |
| 11A1 | $11^{2}$ | $2$ | $11$ | $20$ | $( 1,16, 7,22,14, 6,19,12, 4,18,10)( 2,15, 8,21,13, 5,20,11, 3,17, 9)$ |
| 11A2 | $11^{2}$ | $2$ | $11$ | $20$ | $( 1, 7,14,19, 4,10,16,22, 6,12,18)( 2, 8,13,20, 3, 9,15,21, 5,11,17)$ |
| 11A3 | $11^{2}$ | $2$ | $11$ | $20$ | $( 1,22,19,18,16,14,12,10, 7, 6, 4)( 2,21,20,17,15,13,11, 9, 8, 5, 3)$ |
| 11A4 | $11^{2}$ | $2$ | $11$ | $20$ | $( 1,14, 4,16, 6,18, 7,19,10,22,12)( 2,13, 3,15, 5,17, 8,20, 9,21,11)$ |
| 11A5 | $11^{2}$ | $2$ | $11$ | $20$ | $( 1, 6,10,14,18,22, 4, 7,12,16,19)( 2, 5, 9,13,17,21, 3, 8,11,15,20)$ |
| 22A1 | $22$ | $2$ | $22$ | $21$ | $( 1,20,16,11, 7, 3,22,17,14, 9, 6, 2,19,15,12, 8, 4,21,18,13,10, 5)$ |
| 22A3 | $22$ | $2$ | $22$ | $21$ | $( 1,11,22, 9,19, 8,18, 5,16, 3,14, 2,12,21,10,20, 7,17, 6,15, 4,13)$ |
| 22A5 | $22$ | $2$ | $22$ | $21$ | $( 1, 3, 6, 8,10,11,14,15,18,20,22, 2, 4, 5, 7, 9,12,13,16,17,19,21)$ |
| 22A7 | $22$ | $2$ | $22$ | $21$ | $( 1,17,12, 5,22,15,10, 3,19,13, 7, 2,18,11, 6,21,16, 9, 4,20,14, 8)$ |
| 22A9 | $22$ | $2$ | $22$ | $21$ | $( 1, 9,18, 3,12,20, 6,13,22, 8,16, 2,10,17, 4,11,19, 5,14,21, 7,15)$ |
Malle's constant $a(G)$: $1/10$
Character table
| 1A | 2A | 2B | 2C | 11A1 | 11A2 | 11A3 | 11A4 | 11A5 | 22A1 | 22A3 | 22A5 | 22A7 | 22A9 | ||
| Size | 1 | 1 | 11 | 11 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 1A | 1A | 11A2 | 11A4 | 11A5 | 11A3 | 11A1 | 11A1 | 11A3 | 11A5 | 11A4 | 11A2 | |
| 11 P | 1A | 2A | 2B | 2C | 11A5 | 11A1 | 11A4 | 11A2 | 11A3 | 22A5 | 22A7 | 22A3 | 22A9 | 22A1 | |
| Type | |||||||||||||||
| 44.3.1a | R | ||||||||||||||
| 44.3.1b | R | ||||||||||||||
| 44.3.1c | R | ||||||||||||||
| 44.3.1d | R | ||||||||||||||
| 44.3.2a1 | R | ||||||||||||||
| 44.3.2a2 | R | ||||||||||||||
| 44.3.2a3 | R | ||||||||||||||
| 44.3.2a4 | R | ||||||||||||||
| 44.3.2a5 | R | ||||||||||||||
| 44.3.2b1 | R | ||||||||||||||
| 44.3.2b2 | R | ||||||||||||||
| 44.3.2b3 | R | ||||||||||||||
| 44.3.2b4 | R | ||||||||||||||
| 44.3.2b5 | R |
Regular extensions
Data not computed