Group action invariants
| Degree $n$ : | $22$ | |
| Transitive number $t$ : | $3$ | |
| Group : | $D_{22}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,19)(2,20)(3,17)(4,18)(5,15)(6,16)(7,14)(8,13)(9,11)(10,12), (1,21)(2,22)(3,19)(4,20)(5,18)(6,17)(7,15)(8,16)(9,14)(10,13)(11,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 22: $D_{11}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: $D_{11}$
Low degree siblings
22T3, 44T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $11$ | $2$ | $( 3,21)( 4,22)( 5,20)( 6,19)( 7,18)( 8,17)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $11$ | $2$ | $( 1, 2)( 3,22)( 4,21)( 5,19)( 6,20)( 7,17)( 8,18)( 9,16)(10,15)(11,14)(12,13)$ |
| $ 22 $ | $2$ | $22$ | $( 1, 3, 6, 8,10,11,14,15,18,20,22, 2, 4, 5, 7, 9,12,13,16,17,19,21)$ |
| $ 11, 11 $ | $2$ | $11$ | $( 1, 4, 6, 7,10,12,14,16,18,19,22)( 2, 3, 5, 8, 9,11,13,15,17,20,21)$ |
| $ 22 $ | $2$ | $22$ | $( 1, 5,10,13,18,21, 4, 8,12,15,19, 2, 6, 9,14,17,22, 3, 7,11,16,20)$ |
| $ 11, 11 $ | $2$ | $11$ | $( 1, 6,10,14,18,22, 4, 7,12,16,19)( 2, 5, 9,13,17,21, 3, 8,11,15,20)$ |
| $ 11, 11 $ | $2$ | $11$ | $( 1, 7,14,19, 4,10,16,22, 6,12,18)( 2, 8,13,20, 3, 9,15,21, 5,11,17)$ |
| $ 22 $ | $2$ | $22$ | $( 1, 8,14,20, 4, 9,16,21, 6,11,18, 2, 7,13,19, 3,10,15,22, 5,12,17)$ |
| $ 22 $ | $2$ | $22$ | $( 1, 9,18, 3,12,20, 6,13,22, 8,16, 2,10,17, 4,11,19, 5,14,21, 7,15)$ |
| $ 11, 11 $ | $2$ | $11$ | $( 1,10,18, 4,12,19, 6,14,22, 7,16)( 2, 9,17, 3,11,20, 5,13,21, 8,15)$ |
| $ 22 $ | $2$ | $22$ | $( 1,11,22, 9,19, 8,18, 5,16, 3,14, 2,12,21,10,20, 7,17, 6,15, 4,13)$ |
| $ 11, 11 $ | $2$ | $11$ | $( 1,12,22,10,19, 7,18, 6,16, 4,14)( 2,11,21, 9,20, 8,17, 5,15, 3,13)$ |
Group invariants
| Order: | $44=2^{2} \cdot 11$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [44, 3] |
| Character table: |
2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
11 1 . 1 . 1 1 1 1 1 1 1 1 1 1
1a 2a 2b 2c 22a 11a 22b 11b 11c 22c 22d 11d 22e 11e
2P 1a 1a 1a 1a 11b 11b 11d 11d 11e 11e 11c 11c 11a 11a
3P 1a 2a 2b 2c 22c 11c 22e 11e 11b 22b 22a 11a 22d 11d
5P 1a 2a 2b 2c 22e 11e 22a 11a 11d 22d 22b 11b 22c 11c
7P 1a 2a 2b 2c 22d 11d 22c 11c 11a 22a 22e 11e 22b 11b
11P 1a 2a 2b 2c 2b 1a 2b 1a 1a 2b 2b 1a 2b 1a
13P 1a 2a 2b 2c 22b 11b 22d 11d 11e 22e 22c 11c 22a 11a
17P 1a 2a 2b 2c 22e 11e 22a 11a 11d 22d 22b 11b 22c 11c
19P 1a 2a 2b 2c 22c 11c 22e 11e 11b 22b 22a 11a 22d 11d
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1
X.3 1 -1 1 -1 1 1 1 1 1 1 1 1 1 1
X.4 1 1 -1 -1 -1 1 -1 1 1 -1 -1 1 -1 1
X.5 2 . 2 . A A D D E E B B C C
X.6 2 . 2 . B B E E A A C C D D
X.7 2 . 2 . C C A A B B D D E E
X.8 2 . 2 . D D B B C C E E A A
X.9 2 . 2 . E E C C D D A A B B
X.10 2 . -2 . -A A -D D E -E -B B -C C
X.11 2 . -2 . -B B -E E A -A -C C -D D
X.12 2 . -2 . -C C -A A B -B -D D -E E
X.13 2 . -2 . -D D -B B C -C -E E -A A
X.14 2 . -2 . -E E -C C D -D -A A -B B
A = E(11)^4+E(11)^7
B = E(11)^5+E(11)^6
C = E(11)^2+E(11)^9
D = E(11)^3+E(11)^8
E = E(11)+E(11)^10
|