Properties

Label 21T87
Order \(49392\)
n \(21\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $87$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,18,14,2,16,9)(3,21,11,7,20,12)(4,19,13,6,15,10)(5,17,8), (1,17,7,16,4,20,2,18,3,19,6,15)(5,21)(8,11,10)(9,13,14), (1,21,13,7,20,9,6,19,12,5,18,8,4,17,11,3,16,14,2,15,10)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $S_3$, $C_6$ x 3
12:  $D_{6}$, $C_6\times C_2$
18:  $S_3\times C_3$
24:  $S_4$
36:  $C_6\times S_3$
48:  $S_4\times C_2$
72:  12T45
144:  18T61

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $S_3$

Degree 7: None

Low degree siblings

28T544, 42T991, 42T992, 42T993, 42T994, 42T995, 42T996, 42T997, 42T998

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 51 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $49392=2^{4} \cdot 3^{2} \cdot 7^{3}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.