Show commands: Magma
Group invariants
| Abstract group: | $C_2\times C_5^2:Q_8$ |
| |
| Order: | $400=2^{4} \cdot 5^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $20$ |
| |
| Transitive number $t$: | $99$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,13,9,17)(2,14,10,18)(3,15,19,8)(4,16,20,7)$, $(1,4,5,11)(2,3,6,12)(7,13)(8,14)(9,20,17,16)(10,19,18,15)$, $(1,3,13,8)(2,4,14,7)(5,12,9,19)(6,11,10,20)(15,17)(16,18)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $C_2^3$, $Q_8$ x 2 $16$: $Q_8\times C_2$ $200$: $C_5^2 : Q_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 5: None
Degree 10: $C_5^2 : Q_8$
Low degree siblings
20T99 x 5, 40T321 x 3, 40T325 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{10}$ | $1$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| 2B | $2^{8},1^{4}$ | $25$ | $2$ | $8$ | $( 1, 9)( 2,10)( 3,12)( 4,11)(13,17)(14,18)(15,19)(16,20)$ |
| 2C | $2^{10}$ | $25$ | $2$ | $10$ | $( 1,18)( 2,17)( 3,16)( 4,15)( 5,14)( 6,13)( 7,12)( 8,11)( 9,10)(19,20)$ |
| 4A | $4^{4},2^{2}$ | $50$ | $4$ | $14$ | $( 1,16, 9,20)( 2,15,10,19)( 3,14,12,18)( 4,13,11,17)( 5, 7)( 6, 8)$ |
| 4B | $4^{4},2^{2}$ | $50$ | $4$ | $14$ | $( 1,16,17,11)( 2,15,18,12)( 3,10)( 4, 9)( 5,20,13, 7)( 6,19,14, 8)$ |
| 4C | $4^{4},2^{2}$ | $50$ | $4$ | $14$ | $( 1,18, 9,14)( 2,17,10,13)( 3, 7,19,16)( 4, 8,20,15)( 5, 6)(11,12)$ |
| 4D | $4^{4},1^{4}$ | $50$ | $4$ | $12$ | $( 1, 5,13, 9)( 2, 6,14,10)( 3,19, 8,12)( 4,20, 7,11)$ |
| 4E | $4^{4},2^{2}$ | $50$ | $4$ | $14$ | $( 1,15, 9,12)( 2,16,10,11)( 3, 5)( 4, 6)( 7,14,20,18)( 8,13,19,17)$ |
| 4F | $4^{4},2^{2}$ | $50$ | $4$ | $14$ | $( 1,19)( 2,20)( 3, 5,15,17)( 4, 6,16,18)( 7,10,11,14)( 8, 9,12,13)$ |
| 5A | $5^{2},1^{10}$ | $8$ | $5$ | $8$ | $( 1,17,13, 9, 5)( 2,18,14,10, 6)$ |
| 5B | $5^{4}$ | $8$ | $5$ | $16$ | $( 1, 9,17, 5,13)( 2,10,18, 6,14)( 3,19,15,12, 8)( 4,20,16,11, 7)$ |
| 5C | $5^{4}$ | $8$ | $5$ | $16$ | $( 1, 5, 9,13,17)( 2, 6,10,14,18)( 3,19,15,12, 8)( 4,20,16,11, 7)$ |
| 10A | $10,2^{5}$ | $8$ | $10$ | $14$ | $( 1,10,17, 6,13, 2, 9,18, 5,14)( 3, 4)( 7, 8)(11,12)(15,16)(19,20)$ |
| 10B | $10^{2}$ | $8$ | $10$ | $18$ | $( 1, 6, 9,14,17, 2, 5,10,13,18)( 3,11,19, 7,15, 4,12,20, 8,16)$ |
| 10C | $10^{2}$ | $8$ | $10$ | $18$ | $( 1,14, 5,18, 9, 2,13, 6,17,10)( 3,11,19, 7,15, 4,12,20, 8,16)$ |
Malle's constant $a(G)$: $1/8$
Character table
| 1A | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 5C | 10A | 10B | 10C | ||
| Size | 1 | 1 | 25 | 25 | 50 | 50 | 50 | 50 | 50 | 50 | 8 | 8 | 8 | 8 | 8 | 8 | |
| 2 P | 1A | 1A | 1A | 1A | 2B | 2B | 2B | 2B | 2B | 2B | 5A | 5B | 5C | 5A | 5B | 5C | |
| 5 P | 1A | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 1A | 1A | 1A | 2A | 2A | 2A | |
| Type | |||||||||||||||||
| 400.212.1a | R | ||||||||||||||||
| 400.212.1b | R | ||||||||||||||||
| 400.212.1c | R | ||||||||||||||||
| 400.212.1d | R | ||||||||||||||||
| 400.212.1e | R | ||||||||||||||||
| 400.212.1f | R | ||||||||||||||||
| 400.212.1g | R | ||||||||||||||||
| 400.212.1h | R | ||||||||||||||||
| 400.212.2a | S | ||||||||||||||||
| 400.212.2b | S | ||||||||||||||||
| 400.212.8a | R | ||||||||||||||||
| 400.212.8b | R | ||||||||||||||||
| 400.212.8c | R | ||||||||||||||||
| 400.212.8d | R | ||||||||||||||||
| 400.212.8e | R | ||||||||||||||||
| 400.212.8f | R |
Regular extensions
Data not computed