Show commands: Magma
Group invariants
| Abstract group: | $C_5:D_4$ |
| |
| Order: | $40=2^{3} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $20$ |
| |
| Transitive number $t$: | $7$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,11,2,12)(3,9,4,10)(5,8,6,7)(13,19,14,20)(15,17,16,18)$, $(1,8,13,20,6,12,18,4,10,16)(2,7,14,19,5,11,17,3,9,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ $10$: $D_{5}$ $20$: $D_{10}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 5: $D_{5}$
Degree 10: $D_{10}$
Low degree siblings
20T11, 40T11Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{10}$ | $1$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| 2B | $2^{10}$ | $2$ | $2$ | $10$ | $( 1,11)( 2,12)( 3,13)( 4,14)( 5,16)( 6,15)( 7,18)( 8,17)( 9,20)(10,19)$ |
| 2C | $2^{9},1^{2}$ | $10$ | $2$ | $9$ | $( 3,20)( 4,19)( 5,17)( 6,18)( 7,16)( 8,15)( 9,14)(10,13)(11,12)$ |
| 4A | $4^{5}$ | $10$ | $4$ | $15$ | $( 1,12, 2,11)( 3,10, 4, 9)( 5, 7, 6, 8)(13,20,14,19)(15,18,16,17)$ |
| 5A1 | $5^{4}$ | $2$ | $5$ | $16$ | $( 1,10,18, 6,13)( 2, 9,17, 5,14)( 3,11,19, 7,15)( 4,12,20, 8,16)$ |
| 5A2 | $5^{4}$ | $2$ | $5$ | $16$ | $( 1,18,13,10, 6)( 2,17,14, 9, 5)( 3,19,15,11, 7)( 4,20,16,12, 8)$ |
| 10A1 | $10^{2}$ | $2$ | $10$ | $18$ | $( 1, 5,10,14,18, 2, 6, 9,13,17)( 3, 8,11,16,19, 4, 7,12,15,20)$ |
| 10A3 | $10^{2}$ | $2$ | $10$ | $18$ | $( 1, 9,18, 5,13, 2,10,17, 6,14)( 3,12,19, 8,15, 4,11,20, 7,16)$ |
| 10B1 | $10^{2}$ | $2$ | $10$ | $18$ | $( 1,15,10, 3,18,11, 6,19,13, 7)( 2,16, 9, 4,17,12, 5,20,14, 8)$ |
| 10B-1 | $10^{2}$ | $2$ | $10$ | $18$ | $( 1, 7,13,19, 6,11,18, 3,10,15)( 2, 8,14,20, 5,12,17, 4, 9,16)$ |
| 10B3 | $10^{2}$ | $2$ | $10$ | $18$ | $( 1,20,18,16,13,12,10, 8, 6, 4)( 2,19,17,15,14,11, 9, 7, 5, 3)$ |
| 10B-3 | $10^{2}$ | $2$ | $10$ | $18$ | $( 1, 4, 6, 8,10,12,13,16,18,20)( 2, 3, 5, 7, 9,11,14,15,17,19)$ |
Malle's constant $a(G)$: $1/9$
Character table
| 1A | 2A | 2B | 2C | 4A | 5A1 | 5A2 | 10A1 | 10A3 | 10B1 | 10B-1 | 10B3 | 10B-3 | ||
| Size | 1 | 1 | 2 | 10 | 10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 1A | 1A | 2A | 5A2 | 5A1 | 5A1 | 5A2 | 5A1 | 5A1 | 5A2 | 5A2 | |
| 5 P | 1A | 2A | 2B | 2C | 4A | 1A | 1A | 2A | 2A | 2B | 2B | 2B | 2B | |
| Type | ||||||||||||||
| 40.8.1a | R | |||||||||||||
| 40.8.1b | R | |||||||||||||
| 40.8.1c | R | |||||||||||||
| 40.8.1d | R | |||||||||||||
| 40.8.2a | R | |||||||||||||
| 40.8.2b1 | R | |||||||||||||
| 40.8.2b2 | R | |||||||||||||
| 40.8.2c1 | R | |||||||||||||
| 40.8.2c2 | R | |||||||||||||
| 40.8.2d1 | C | |||||||||||||
| 40.8.2d2 | C | |||||||||||||
| 40.8.2d3 | C | |||||||||||||
| 40.8.2d4 | C |
Regular extensions
Data not computed