Show commands: Magma
Group invariants
Abstract group: | $C_2^4.F_{16}:C_4$ |
| |
Order: | $15360=2^{10} \cdot 3 \cdot 5$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $20$ |
| |
Transitive number $t$: | $472$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,9,17,8,14,4,11,18,5,16,3,10,20,6,13)(2,12,19,7,15)$, $(1,19,7,11,2,17,8,9)(3,20,5,12,4,18,6,10)(13,15,16,14)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $6$: $S_3$ $12$: $C_3 : C_4$ $20$: $F_5$ $60$: $C_{15} : C_4$ $960$: 16T1079 x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: $F_5$
Degree 10: None
Low degree siblings
30T886, 30T900, 40T10658, 40T10665Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8},1^{4}$ | $15$ | $2$ | $8$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
2B | $2^{8},1^{4}$ | $15$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)$ |
2C | $2^{8},1^{4}$ | $15$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 9,12)(10,11)(13,14)(15,16)(17,18)(19,20)$ |
2D | $2^{4},1^{12}$ | $30$ | $2$ | $4$ | $(1,3)(2,4)(5,7)(6,8)$ |
2E | $2^{6},1^{8}$ | $60$ | $2$ | $6$ | $( 9,10)(11,12)(13,15)(14,16)(17,20)(18,19)$ |
2F | $2^{8},1^{4}$ | $60$ | $2$ | $8$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,15)(14,16)(17,19)(18,20)$ |
2G | $2^{10}$ | $60$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,15)(14,16)(17,20)(18,19)$ |
2H | $2^{8},1^{4}$ | $80$ | $2$ | $8$ | $( 1,19)( 2,20)( 3,17)( 4,18)( 5,15)( 6,16)( 7,13)( 8,14)$ |
3A | $3^{5},1^{5}$ | $512$ | $3$ | $10$ | $( 1, 3, 2)( 6, 7, 8)( 9,10,12)(13,15,14)(17,18,20)$ |
4A | $4^{4},1^{4}$ | $240$ | $4$ | $12$ | $( 5,19, 6,20)( 7,17, 8,18)( 9,15,10,16)(11,13,12,14)$ |
4B | $4^{4},2^{2}$ | $240$ | $4$ | $14$ | $( 1,15, 4,14)( 2,16, 3,13)( 5, 9, 7,11)( 6,10, 8,12)(17,18)(19,20)$ |
4C | $4^{4},2^{2}$ | $240$ | $4$ | $14$ | $( 1,10, 4,11)( 2, 9, 3,12)( 5, 7)( 6, 8)(13,20,14,19)(15,18,16,17)$ |
4D | $4^{2},2^{6}$ | $480$ | $4$ | $12$ | $( 1, 5, 3, 7)( 2, 6, 4, 8)( 9,17)(10,18)(11,19)(12,20)(13,15)(14,16)$ |
4E1 | $4^{4},2,1^{2}$ | $960$ | $4$ | $13$ | $( 1, 7,19,13)( 2, 8,20,14)( 3, 6,17,16)( 4, 5,18,15)(11,12)$ |
4E-1 | $4^{4},2,1^{2}$ | $960$ | $4$ | $13$ | $( 1,13,19, 7)( 2,14,20, 8)( 3,16,17, 6)( 4,15,18, 5)(11,12)$ |
5A | $5^{4}$ | $1024$ | $5$ | $16$ | $( 1,10,18, 8,13)( 2, 9,17, 7,14)( 3,12,20, 6,15)( 4,11,19, 5,16)$ |
6A | $6^{2},3,2^{2},1$ | $2560$ | $6$ | $14$ | $( 1, 4, 2)( 5,18, 7,17, 6,19)( 8,20)( 9,15)(10,14,11,16,12,13)$ |
8A1 | $8^{2},2,1^{2}$ | $960$ | $8$ | $15$ | $( 1, 2)( 5,12,19,14, 6,11,20,13)( 7, 9,17,15, 8,10,18,16)$ |
8A-1 | $8^{2},2,1^{2}$ | $960$ | $8$ | $15$ | $( 1, 2)( 5,13,20,11, 6,14,19,12)( 7,16,18,10, 8,15,17, 9)$ |
8B1 | $8^{2},4$ | $960$ | $8$ | $17$ | $( 1, 8,15,12, 4, 6,14,10)( 2, 7,16,11, 3, 5,13, 9)(17,19,18,20)$ |
8B-1 | $8^{2},4$ | $960$ | $8$ | $17$ | $( 1,10,14, 6, 4,12,15, 8)( 2, 9,13, 5, 3,11,16, 7)(17,20,18,19)$ |
8C1 | $8^{2},4$ | $960$ | $8$ | $17$ | $( 1,17,10,15, 4,18,11,16)( 2,20, 9,14, 3,19,12,13)( 5, 6, 7, 8)$ |
8C-1 | $8^{2},4$ | $960$ | $8$ | $17$ | $( 1,16,11,18, 4,15,10,17)( 2,13,12,19, 3,14, 9,20)( 5, 8, 7, 6)$ |
15A1 | $15,5$ | $1024$ | $15$ | $18$ | $( 1,17,15,10, 7, 3,18,14,12, 8, 2,20,13, 9, 6)( 4,19,16,11, 5)$ |
15A-1 | $15,5$ | $1024$ | $15$ | $18$ | $( 1, 6, 9,13,20, 2, 8,12,14,18, 3, 7,10,15,17)( 4, 5,11,16,19)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 3A | 4A | 4B | 4C | 4D | 4E1 | 4E-1 | 5A | 6A | 8A1 | 8A-1 | 8B1 | 8B-1 | 8C1 | 8C-1 | 15A1 | 15A-1 | ||
Size | 1 | 15 | 15 | 15 | 30 | 60 | 60 | 60 | 80 | 512 | 240 | 240 | 240 | 480 | 960 | 960 | 1024 | 2560 | 960 | 960 | 960 | 960 | 960 | 960 | 1024 | 1024 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 2A | 2B | 2C | 2D | 2H | 2H | 5A | 3A | 4A | 4A | 4B | 4B | 4C | 4C | 15A1 | 15A-1 | |
3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 1A | 4A | 4B | 4C | 4D | 4E-1 | 4E1 | 5A | 2H | 8A-1 | 8A1 | 8B-1 | 8B1 | 8C-1 | 8C1 | 5A | 5A | |
5 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 3A | 4A | 4B | 4C | 4D | 4E1 | 4E-1 | 1A | 6A | 8A1 | 8A-1 | 8B1 | 8B-1 | 8C1 | 8C-1 | 3A | 3A | |
Type | |||||||||||||||||||||||||||
15360.k.1a | R | ||||||||||||||||||||||||||
15360.k.1b | R | ||||||||||||||||||||||||||
15360.k.1c1 | C | ||||||||||||||||||||||||||
15360.k.1c2 | C | ||||||||||||||||||||||||||
15360.k.2a | R | ||||||||||||||||||||||||||
15360.k.2b | S | ||||||||||||||||||||||||||
15360.k.4a | R | ||||||||||||||||||||||||||
15360.k.4b1 | C | ||||||||||||||||||||||||||
15360.k.4b2 | C | ||||||||||||||||||||||||||
15360.k.15a | R | ||||||||||||||||||||||||||
15360.k.15b | R | ||||||||||||||||||||||||||
15360.k.15c | R | ||||||||||||||||||||||||||
15360.k.15d | R | ||||||||||||||||||||||||||
15360.k.15e | R | ||||||||||||||||||||||||||
15360.k.15f | R | ||||||||||||||||||||||||||
15360.k.15g1 | C | ||||||||||||||||||||||||||
15360.k.15g2 | C | ||||||||||||||||||||||||||
15360.k.15h1 | C | ||||||||||||||||||||||||||
15360.k.15h2 | C | ||||||||||||||||||||||||||
15360.k.15i1 | C | ||||||||||||||||||||||||||
15360.k.15i2 | C | ||||||||||||||||||||||||||
15360.k.30a | R | ||||||||||||||||||||||||||
15360.k.30b | R | ||||||||||||||||||||||||||
15360.k.60a | R | ||||||||||||||||||||||||||
15360.k.60b | R | ||||||||||||||||||||||||||
15360.k.60c | R |
Regular extensions
Data not computed