Show commands: Magma
Group invariants
Abstract group: | $C_2^8.(C_3\times F_5)$ |
| |
Order: | $15360=2^{10} \cdot 3 \cdot 5$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $20$ |
| |
Transitive number $t$: | $471$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,2,3)(5,18,6,19,8,20)(7,17)(9,16,12,14,11,15)(10,13)$, $(1,5,13,10)(2,7,16,9,3,8,14,12,4,6,15,11)(17,20,19)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $4$: $C_4$ $6$: $C_6$ $12$: $C_{12}$ $20$: $F_5$ $60$: $F_5\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: $F_5$
Degree 10: None
Low degree siblings
30T897, 30T901, 32T723616, 40T10657, 40T10666, 40T10667Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8},1^{4}$ | $15$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
2B | $2^{4},1^{12}$ | $30$ | $2$ | $4$ | $( 5, 7)( 6, 8)( 9,11)(10,12)$ |
2C | $2^{8},1^{4}$ | $30$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)(13,16)(14,15)(17,19)(18,20)$ |
2D | $2^{6},1^{8}$ | $60$ | $2$ | $6$ | $( 9,10)(11,12)(13,15)(14,16)(17,20)(18,19)$ |
2E | $2^{8},1^{4}$ | $60$ | $2$ | $8$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,15)(14,16)(17,19)(18,20)$ |
2F | $2^{10}$ | $60$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,15)(14,16)(17,20)(18,19)$ |
2G | $2^{8},1^{4}$ | $80$ | $2$ | $8$ | $( 5,20)( 6,19)( 7,18)( 8,17)( 9,14)(10,13)(11,16)(12,15)$ |
3A1 | $3^{5},1^{5}$ | $256$ | $3$ | $10$ | $( 1, 4, 2)( 5, 6, 7)(10,12,11)(13,15,16)(18,20,19)$ |
3A-1 | $3^{5},1^{5}$ | $256$ | $3$ | $10$ | $( 1, 2, 4)( 5, 7, 6)(10,11,12)(13,16,15)(18,19,20)$ |
4A | $4^{4},1^{4}$ | $240$ | $4$ | $12$ | $( 1,10, 2, 9)( 3,12, 4,11)(13,20,14,19)(15,18,16,17)$ |
4B1 | $4^{4},1^{4}$ | $320$ | $4$ | $12$ | $( 5,15,20,12)( 6,16,19,11)( 7,13,18,10)( 8,14,17, 9)$ |
4B-1 | $4^{4},1^{4}$ | $320$ | $4$ | $12$ | $( 5,12,20,15)( 6,11,19,16)( 7,10,18,13)( 8, 9,17,14)$ |
4C | $4^{2},2^{6}$ | $480$ | $4$ | $12$ | $( 1,16)( 2,15)( 3,14)( 4,13)( 5,11, 7, 9)( 6,12, 8,10)(17,19)(18,20)$ |
4D | $4^{4},2^{2}$ | $480$ | $4$ | $14$ | $( 1,20, 3,18)( 2,19, 4,17)( 5,14, 8,15)( 6,13, 7,16)( 9,10)(11,12)$ |
5A | $5^{4}$ | $1024$ | $5$ | $16$ | $( 1,10,18, 7,14)( 2, 9,17, 8,13)( 3,12,20, 5,16)( 4,11,19, 6,15)$ |
6A1 | $6^{2},3,2^{2},1$ | $1280$ | $6$ | $14$ | $( 1, 2, 4)( 5,18, 6,20, 7,19)( 8,17)( 9,14)(10,16,12,13,11,15)$ |
6A-1 | $6^{2},3,2^{2},1$ | $1280$ | $6$ | $14$ | $( 1, 4, 2)( 5,19, 7,20, 6,18)( 8,17)( 9,14)(10,15,11,13,12,16)$ |
8A1 | $8^{2},2^{2}$ | $960$ | $8$ | $16$ | $( 1,13,10,20, 2,14, 9,19)( 3,15,12,18, 4,16,11,17)( 5, 6)( 7, 8)$ |
8A-1 | $8^{2},2^{2}$ | $960$ | $8$ | $16$ | $( 1,19, 9,14, 2,20,10,13)( 3,17,11,16, 4,18,12,15)( 5, 6)( 7, 8)$ |
12A1 | $12,4,3,1$ | $1280$ | $12$ | $16$ | $( 1, 4, 2)( 5,11,18,15, 6,10,20,16, 7,12,19,13)( 8, 9,17,14)$ |
12A-1 | $12,4,3,1$ | $1280$ | $12$ | $16$ | $( 1, 2, 4)( 5,13,19,12, 7,16,20,10, 6,15,18,11)( 8,14,17, 9)$ |
12A5 | $12,4,3,1$ | $1280$ | $12$ | $16$ | $( 1, 2, 4)( 5,10,19,15, 7,11,20,13, 6,12,18,16)( 8, 9,17,14)$ |
12A-5 | $12,4,3,1$ | $1280$ | $12$ | $16$ | $( 1, 4, 2)( 5,16,18,12, 6,13,20,11, 7,15,19,10)( 8,14,17, 9)$ |
15A1 | $15,5$ | $1024$ | $15$ | $18$ | $( 1,17,16,10, 8, 3,18,13,12, 7, 2,20,14, 9, 5)( 4,19,15,11, 6)$ |
15A-1 | $15,5$ | $1024$ | $15$ | $18$ | $( 1, 5, 9,14,20, 2, 7,12,13,18, 3, 8,10,16,17)( 4, 6,11,15,19)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A1 | 3A-1 | 4A | 4B1 | 4B-1 | 4C | 4D | 5A | 6A1 | 6A-1 | 8A1 | 8A-1 | 12A1 | 12A-1 | 12A5 | 12A-5 | 15A1 | 15A-1 | ||
Size | 1 | 15 | 30 | 30 | 60 | 60 | 60 | 80 | 256 | 256 | 240 | 320 | 320 | 480 | 480 | 1024 | 1280 | 1280 | 960 | 960 | 1280 | 1280 | 1280 | 1280 | 1024 | 1024 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 2A | 2G | 2G | 2B | 2C | 5A | 3A1 | 3A-1 | 4A | 4A | 6A1 | 6A-1 | 6A-1 | 6A1 | 15A-1 | 15A1 | |
3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 1A | 1A | 4A | 4B-1 | 4B1 | 4C | 4D | 5A | 2G | 2G | 8A-1 | 8A1 | 4B1 | 4B-1 | 4B1 | 4B-1 | 5A | 5A | |
5 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A-1 | 3A1 | 4A | 4B1 | 4B-1 | 4C | 4D | 1A | 6A-1 | 6A1 | 8A1 | 8A-1 | 12A5 | 12A-5 | 12A1 | 12A-1 | 3A-1 | 3A1 | |
Type | |||||||||||||||||||||||||||
15360.j.1a | R | ||||||||||||||||||||||||||
15360.j.1b | R | ||||||||||||||||||||||||||
15360.j.1c1 | C | ||||||||||||||||||||||||||
15360.j.1c2 | C | ||||||||||||||||||||||||||
15360.j.1d1 | C | ||||||||||||||||||||||||||
15360.j.1d2 | C | ||||||||||||||||||||||||||
15360.j.1e1 | C | ||||||||||||||||||||||||||
15360.j.1e2 | C | ||||||||||||||||||||||||||
15360.j.1f1 | C | ||||||||||||||||||||||||||
15360.j.1f2 | C | ||||||||||||||||||||||||||
15360.j.1f3 | C | ||||||||||||||||||||||||||
15360.j.1f4 | C | ||||||||||||||||||||||||||
15360.j.4a | R | ||||||||||||||||||||||||||
15360.j.4b1 | C | ||||||||||||||||||||||||||
15360.j.4b2 | C | ||||||||||||||||||||||||||
15360.j.15a | R | ||||||||||||||||||||||||||
15360.j.15b | R | ||||||||||||||||||||||||||
15360.j.15c1 | C | ||||||||||||||||||||||||||
15360.j.15c2 | C | ||||||||||||||||||||||||||
15360.j.30a | R | ||||||||||||||||||||||||||
15360.j.30b | R | ||||||||||||||||||||||||||
15360.j.30c | R | ||||||||||||||||||||||||||
15360.j.30d | R | ||||||||||||||||||||||||||
15360.j.60a | R | ||||||||||||||||||||||||||
15360.j.60b | R | ||||||||||||||||||||||||||
15360.j.60c | R |
Regular extensions
Data not computed