Show commands:
Magma
magma: G := TransitiveGroup(20, 27);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $27$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_5:F_5$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $10$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,12,18,7)(2,11,17,8)(3,5,15,14)(4,6,16,13)(9,20,10,19), (3,8,12,16,19)(4,7,11,15,20) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $20$: $F_5$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 5: None
Degree 10: $C_5^2 : C_4$
Low degree siblings
10T10 x 2, 20T27, 25T10Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 3, 8,12,16,19)( 4, 7,11,15,20)$ |
$ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 3,12,19, 8,16)( 4,11,20, 7,15)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $25$ | $2$ | $( 1, 2)( 3, 4)( 5,17)( 6,18)( 7,19)( 8,20)( 9,14)(10,13)(11,16)(12,15)$ |
$ 4, 4, 4, 4, 4 $ | $25$ | $4$ | $( 1, 3, 2, 4)( 5, 7,17,19)( 6, 8,18,20)( 9,11,14,16)(10,12,13,15)$ |
$ 4, 4, 4, 4, 4 $ | $25$ | $4$ | $( 1, 4, 2, 3)( 5,19,17, 7)( 6,20,18, 8)( 9,16,14,11)(10,15,13,12)$ |
$ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 6,10,14,17)( 2, 5, 9,13,18)( 3, 8,12,16,19)( 4, 7,11,15,20)$ |
$ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 6,10,14,17)( 2, 5, 9,13,18)( 3,12,19, 8,16)( 4,11,20, 7,15)$ |
$ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 6,10,14,17)( 2, 5, 9,13,18)( 3,16, 8,19,12)( 4,15, 7,20,11)$ |
$ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1,10,17, 6,14)( 2, 9,18, 5,13)( 3,12,19, 8,16)( 4,11,20, 7,15)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $100=2^{2} \cdot 5^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 100.12 | magma: IdentifyGroup(G);
|
Character table: |
2 2 . . 2 2 2 . . . . 5 2 2 2 . . . 2 2 2 2 1a 5a 5b 2a 4a 4b 5c 5d 5e 5f 2P 1a 5b 5a 1a 2a 2a 5f 5d 5e 5c 3P 1a 5b 5a 2a 4b 4a 5f 5d 5e 5c 5P 1a 1a 1a 2a 4a 4b 1a 1a 1a 1a X.1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 1 1 -1 -1 1 1 1 1 X.3 1 1 1 -1 C -C 1 1 1 1 X.4 1 1 1 -1 -C C 1 1 1 1 X.5 4 -1 -1 . . . -1 -1 4 -1 X.6 4 -1 -1 . . . -1 4 -1 -1 X.7 4 A *A . . . B -1 -1 *B X.8 4 *A A . . . *B -1 -1 B X.9 4 B *B . . . *A -1 -1 A X.10 4 *B B . . . A -1 -1 *A A = 2*E(5)^2+2*E(5)^3 = -1-Sqrt(5) = -1-r5 B = -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4 = (3+Sqrt(5))/2 = 2+b5 C = -E(4) = -Sqrt(-1) = -i |
magma: CharacterTable(G);