Show commands: Magma
Group invariants
Abstract group: | $C_2\wr F_5$ |
| |
Order: | $640=2^{7} \cdot 5$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $20$ |
| |
Transitive number $t$: | $134$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,19,18,8)(2,20,17,7)(3,11,6,15)(4,12,5,16)(9,13)(10,14)$, $(1,13,5,16)(2,14,6,15)(3,7,4,8)(9,19,17,12,10,20,18,11)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $C_4\times C_2$ $20$: $F_5$ $40$: $F_{5}\times C_2$ $320$: $(C_2^4 : C_5):C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: $F_5$
Degree 10: $F_5$
Low degree siblings
10T29 x 2, 20T129, 20T131 x 2, 20T132, 20T133, 20T135, 20T137 x 2, 20T140, 32T34608 x 2, 40T460, 40T462, 40T473, 40T474, 40T475, 40T476, 40T487, 40T488, 40T489, 40T490, 40T557, 40T558 x 2, 40T561, 40T562, 40T563, 40T564, 40T565, 40T566, 40T567 x 2, 40T576, 40T577, 40T578, 40T579, 40T586Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10}$ | $1$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
2B | $2^{6},1^{8}$ | $5$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 9,10)(11,12)(15,16)(19,20)$ |
2C | $2^{4},1^{12}$ | $5$ | $2$ | $4$ | $( 3, 4)( 5, 6)(11,12)(15,16)$ |
2D | $2^{4},1^{12}$ | $10$ | $2$ | $4$ | $( 3, 4)( 7, 8)( 9,10)(17,18)$ |
2E | $2^{6},1^{8}$ | $10$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(17,18)(19,20)$ |
2F | $2^{10}$ | $20$ | $2$ | $10$ | $( 1,17)( 2,18)( 3, 5)( 4, 6)( 7,19)( 8,20)( 9,10)(11,16)(12,15)(13,14)$ |
2G | $2^{8},1^{4}$ | $20$ | $2$ | $8$ | $( 1,17)( 2,18)( 3, 6)( 4, 5)( 7,19)( 8,20)(11,16)(12,15)$ |
4A | $4^{2},2^{4},1^{4}$ | $20$ | $4$ | $10$ | $( 1,17)( 2,18)( 3, 5, 4, 6)( 7,20)( 8,19)(11,15,12,16)$ |
4B | $4^{2},2^{6}$ | $20$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 9)( 6,10)( 7,11)( 8,12)(13,19,14,20)(15,16)(17,18)$ |
4C | $4^{3},2^{3},1^{2}$ | $40$ | $4$ | $12$ | $( 1,17, 2,18)( 3, 6, 4, 5)( 7,20, 8,19)( 9,10)(11,15)(12,16)$ |
4D | $4^{3},2^{3},1^{2}$ | $40$ | $4$ | $12$ | $( 1,17, 2,18)( 3, 5, 4, 6)( 7,20, 8,19)(11,15)(12,16)(13,14)$ |
4E1 | $4^{4},2^{2}$ | $40$ | $4$ | $14$ | $( 1, 8,17,20)( 2, 7,18,19)( 3,15, 6,12)( 4,16, 5,11)( 9,14)(10,13)$ |
4E-1 | $4^{4},2^{2}$ | $40$ | $4$ | $14$ | $( 1,20,17, 8)( 2,19,18, 7)( 3,12, 6,15)( 4,11, 5,16)( 9,14)(10,13)$ |
4F1 | $4^{4},2^{2}$ | $40$ | $4$ | $14$ | $( 1, 8,18,19)( 2, 7,17,20)( 3,15, 5,12)( 4,16, 6,11)( 9,14)(10,13)$ |
4F-1 | $4^{4},2^{2}$ | $40$ | $4$ | $14$ | $( 1,19,18, 8)( 2,20,17, 7)( 3,12, 5,15)( 4,11, 6,16)( 9,14)(10,13)$ |
5A | $5^{4}$ | $64$ | $5$ | $16$ | $( 1, 9,18, 6, 4)( 2,10,17, 5, 3)( 7,11,13,16,20)( 8,12,14,15,19)$ |
8A1 | $8,4^{3}$ | $40$ | $8$ | $16$ | $( 1,14, 3,20, 2,13, 4,19)( 5,12, 9, 8)( 6,11,10, 7)(15,18,16,17)$ |
8A-1 | $8,4^{3}$ | $40$ | $8$ | $16$ | $( 1,19, 4,13, 2,20, 3,14)( 5, 8, 9,12)( 6, 7,10,11)(15,17,16,18)$ |
8B1 | $8,4^{3}$ | $40$ | $8$ | $16$ | $( 1,19, 4,13, 2,20, 3,14)( 5, 7, 9,11)( 6, 8,10,12)(15,18,16,17)$ |
8B-1 | $8,4^{3}$ | $40$ | $8$ | $16$ | $( 1,14, 3,20, 2,13, 4,19)( 5,11, 9, 7)( 6,12,10, 8)(15,17,16,18)$ |
10A | $10^{2}$ | $64$ | $10$ | $18$ | $( 1, 5, 9, 3,18, 2, 6,10, 4,17)( 7,15,11,19,13, 8,16,12,20,14)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E1 | 4E-1 | 4F1 | 4F-1 | 5A | 8A1 | 8A-1 | 8B1 | 8B-1 | 10A | ||
Size | 1 | 1 | 5 | 5 | 10 | 10 | 20 | 20 | 20 | 20 | 40 | 40 | 40 | 40 | 40 | 40 | 64 | 40 | 40 | 40 | 40 | 64 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2C | 2C | 2E | 2E | 2G | 2G | 2G | 2G | 5A | 4B | 4B | 4B | 4B | 5A | |
5 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E1 | 4E-1 | 4F1 | 4F-1 | 1A | 8A1 | 8A-1 | 8B1 | 8B-1 | 2A | |
Type | |||||||||||||||||||||||
640.21536.1a | R | ||||||||||||||||||||||
640.21536.1b | R | ||||||||||||||||||||||
640.21536.1c | R | ||||||||||||||||||||||
640.21536.1d | R | ||||||||||||||||||||||
640.21536.1e1 | C | ||||||||||||||||||||||
640.21536.1e2 | C | ||||||||||||||||||||||
640.21536.1f1 | C | ||||||||||||||||||||||
640.21536.1f2 | C | ||||||||||||||||||||||
640.21536.4a | R | ||||||||||||||||||||||
640.21536.4b | R | ||||||||||||||||||||||
640.21536.5a | R | ||||||||||||||||||||||
640.21536.5b | R | ||||||||||||||||||||||
640.21536.5c | R | ||||||||||||||||||||||
640.21536.5d | R | ||||||||||||||||||||||
640.21536.5e1 | C | ||||||||||||||||||||||
640.21536.5e2 | C | ||||||||||||||||||||||
640.21536.5f1 | C | ||||||||||||||||||||||
640.21536.5f2 | C | ||||||||||||||||||||||
640.21536.10a | R | ||||||||||||||||||||||
640.21536.10b | R | ||||||||||||||||||||||
640.21536.10c | R | ||||||||||||||||||||||
640.21536.10d | R |
Regular extensions
Data not computed