Properties

Label 20T1039
Order \(14745600\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $1039$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,20,7,16,4,19,8,15)(5,18,13,6,17,14)(9,10)(11,12), (1,16,5,4,14,12)(2,15,6,3,13,11)(7,10,20,18,8,9,19,17)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $D_{4}$ x 2, $C_4\times C_2$
16:  $C_2^2:C_4$
28800:  $S_5^2 \wr C_2$
57600:  20T654
7372800:  20T1022

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $S_5^2 \wr C_2$

Low degree siblings

20T1039, 20T1041 x 2, 40T178077 x 2, 40T178079 x 2, 40T178081 x 2, 40T178084 x 2, 40T178086 x 2, 40T178094 x 2, 40T178104, 40T178106, 40T178135 x 2, 40T178136 x 2, 40T178137 x 2, 40T178138 x 2, 40T178147 x 2, 40T178148 x 2, 40T178149 x 2, 40T178150 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 378 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $14745600=2^{16} \cdot 3^{2} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.