Show commands: Magma
Group invariants
| Abstract group: | $\He_3^2:\SOPlus(4,2)$ |
| |
| Order: | $52488=2^{3} \cdot 3^{8}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $18$ |
| |
| Transitive number $t$: | $725$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,9,5)(2,8,6,3,7,4)(13,14,15)$, $(1,15,5,18,8,11)(2,14,4,17,9,10,3,13,6,16,7,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $S_3$, $C_6$ x 3 $8$: $D_{4}$ $12$: $D_{6}$, $C_6\times C_2$ $18$: $S_3\times C_3$ $24$: $(C_6\times C_2):C_2$, $D_4 \times C_3$ $36$: $C_6\times S_3$ $72$: $C_3^2:D_4$, 12T42 $216$: 12T116, 12T121 $648$: 12T167 $5832$: 18T492 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 6: $S_3\times C_3$
Degree 9: None
Low degree siblings
18T725 x 2, 36T16230 x 3, 36T16231 x 3, 36T16232 x 3, 36T16478 x 3, 36T16635 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
104 x 104 character table
Regular extensions
Data not computed