Properties

Label 18T650
18T650 1 5 1->5 7 1->7 11 1->11 2 6 2->6 8 2->8 12 2->12 3 4 3->4 9 3->9 10 3->10 4->8 4->11 14 4->14 5->7 5->10 15 5->15 6->9 6->12 13 6->13 7->12 7->13 17 7->17 8->11 8->14 16 8->16 9->10 9->15 18 9->18 10->2 10->15 10->17 11->1 11->13 11->16 12->3 12->14 12->18 13->2 13->6 13->17 14->3 14->5 14->18 15->1 15->4 15->16 16->2 16->5 16->8 17->1 17->6 17->9 18->3 18->4 18->7
Degree $18$
Order $26244$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $\He_3^2:S_3^2$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(18, 650);
 

Group invariants

Abstract group:  $\He_3^2:S_3^2$
Copy content magma:IdentifyGroup(G);
 
Order:  $26244=2^{2} \cdot 3^{8}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $18$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $650$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,7,13,2,8,14,3,9,15)(4,11,16,5,10,17,6,12,18)$, $(1,11,13,6,9,18,3,10,15,4,8,16,2,12,14,5,7,17)$, $(1,5,15,16,8,11)(2,6,13,17,9,10)(3,4,14,18,7,12)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$3$:  $C_3$
$4$:  $C_2^2$
$6$:  $S_3$ x 3, $C_6$ x 3
$12$:  $D_{6}$ x 3, $C_6\times C_2$
$18$:  $S_3\times C_3$ x 3
$36$:  $S_3^2$ x 3, $C_6\times S_3$ x 3
$108$:  12T70 x 3, 12T71
$324$:  12T130
$972$:  27T271 x 2
$2916$:  18T409
$8748$:  27T786 x 2

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 6: $S_3\times C_3$

Degree 9: None

Low degree siblings

18T650 x 8, 36T12784 x 9, 36T12916 x 9

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

109 x 109 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed