Show commands: Magma
Group invariants
| Abstract group: | $\He_3^2:S_3^2$ |
| |
| Order: | $26244=2^{2} \cdot 3^{8}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $18$ |
| |
| Transitive number $t$: | $650$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,7,13,2,8,14,3,9,15)(4,11,16,5,10,17,6,12,18)$, $(1,11,13,6,9,18,3,10,15,4,8,16,2,12,14,5,7,17)$, $(1,5,15,16,8,11)(2,6,13,17,9,10)(3,4,14,18,7,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $S_3$ x 3, $C_6$ x 3 $12$: $D_{6}$ x 3, $C_6\times C_2$ $18$: $S_3\times C_3$ x 3 $36$: $S_3^2$ x 3, $C_6\times S_3$ x 3 $108$: 12T70 x 3, 12T71 $324$: 12T130 $972$: 27T271 x 2 $2916$: 18T409 $8748$: 27T786 x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 6: $S_3\times C_3$
Degree 9: None
Low degree siblings
18T650 x 8, 36T12784 x 9, 36T12916 x 9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
109 x 109 character table
Regular extensions
Data not computed