Show commands: Magma
Group invariants
Abstract group: | $C_3^4:(C_2\times C_4)$ |
| |
Order: | $648=2^{3} \cdot 3^{4}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $18$ |
| |
Transitive number $t$: | $190$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,11)(2,12,3,10)(4,14,7,17)(5,15,9,16)(6,13,8,18)$, $(1,4)(2,5)(3,6)(10,12,11)(13,18,14,16,15,17)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $C_4\times C_2$ $36$: $C_3^2:C_4$ x 2 $72$: 12T40 x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 6: $C_3^2:C_4$ x 2
Degree 9: None
Low degree siblings
12T171 x 8, 18T190 x 7, 18T192 x 8, 24T1523 x 8, 36T1082 x 8, 36T1083 x 16, 36T1087 x 8, 36T1198 x 16, 36T1233 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{18}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6},1^{6}$ | $9$ | $2$ | $6$ | $( 1, 3)( 4, 6)( 7, 9)(11,12)(14,15)(17,18)$ |
2B | $2^{6},1^{6}$ | $9$ | $2$ | $6$ | $( 4, 7)( 5, 8)( 6, 9)(10,13)(11,14)(12,15)$ |
2C | $2^{8},1^{2}$ | $81$ | $2$ | $8$ | $( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,12)(13,18)(14,17)(15,16)$ |
3A | $3^{3},1^{9}$ | $4$ | $3$ | $6$ | $(10,16,13)(11,17,14)(12,18,15)$ |
3B | $3^{6}$ | $4$ | $3$ | $12$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,12,11)(13,15,14)(16,18,17)$ |
3C | $3^{6}$ | $4$ | $3$ | $12$ | $( 1, 7, 4)( 2, 8, 5)( 3, 9, 6)(10,13,16)(11,14,17)(12,15,18)$ |
3D | $3^{3},1^{9}$ | $4$ | $3$ | $6$ | $(1,3,2)(4,6,5)(7,9,8)$ |
3E | $3^{6}$ | $8$ | $3$ | $12$ | $( 1, 6, 8)( 2, 4, 9)( 3, 5, 7)(10,16,13)(11,17,14)(12,18,15)$ |
3F | $3^{6}$ | $8$ | $3$ | $12$ | $( 1, 9, 5)( 2, 7, 6)( 3, 8, 4)(10,16,13)(11,17,14)(12,18,15)$ |
3G | $3^{6}$ | $8$ | $3$ | $12$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,16,13)(11,17,14)(12,18,15)$ |
3H | $3^{6}$ | $8$ | $3$ | $12$ | $( 1, 9, 5)( 2, 7, 6)( 3, 8, 4)(10,12,11)(13,15,14)(16,18,17)$ |
3I | $3^{6}$ | $8$ | $3$ | $12$ | $( 1, 5, 9)( 2, 6, 7)( 3, 4, 8)(10,18,14)(11,16,15)(12,17,13)$ |
3J | $3^{3},1^{9}$ | $8$ | $3$ | $6$ | $(10,17,15)(11,18,13)(12,16,14)$ |
3K | $3^{6}$ | $8$ | $3$ | $12$ | $( 1, 8, 6)( 2, 9, 4)( 3, 7, 5)(10,18,14)(11,16,15)(12,17,13)$ |
3L | $3^{6}$ | $8$ | $3$ | $12$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,18,14)(11,16,15)(12,17,13)$ |
4A1 | $4^{4},2$ | $81$ | $4$ | $13$ | $( 1,11)( 2,10, 3,12)( 4,14, 7,17)( 5,13, 9,18)( 6,15, 8,16)$ |
4A-1 | $4^{4},2$ | $81$ | $4$ | $13$ | $( 1,11)( 2,12, 3,10)( 4,17, 7,14)( 5,18, 9,13)( 6,16, 8,15)$ |
4B1 | $4^{4},2$ | $81$ | $4$ | $13$ | $( 1,18, 6,11)( 2,16, 5,10)( 3,17, 4,12)( 7,15, 9,14)( 8,13)$ |
4B-1 | $4^{4},2$ | $81$ | $4$ | $13$ | $( 1,11, 6,18)( 2,10, 5,16)( 3,12, 4,17)( 7,14, 9,15)( 8,13)$ |
6A | $6,3,2^{3},1^{3}$ | $36$ | $6$ | $10$ | $( 1, 3)( 4, 6)( 7, 9)(10,13,16)(11,15,17,12,14,18)$ |
6B | $6^{2},3^{2}$ | $36$ | $6$ | $14$ | $( 1, 3, 2)( 4, 9, 5, 7, 6, 8)(10,14,12,13,11,15)(16,17,18)$ |
6C | $6^{2},3^{2}$ | $36$ | $6$ | $14$ | $( 1, 4, 7)( 2, 6, 8, 3, 5, 9)(10,17,13,11,16,14)(12,18,15)$ |
6D | $6,3,2^{3},1^{3}$ | $36$ | $6$ | $10$ | $( 1, 5, 3, 4, 2, 6)( 7, 8, 9)(13,16)(14,17)(15,18)$ |
Malle's constant $a(G)$: $1/6$
Character table
1A | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3L | 4A1 | 4A-1 | 4B1 | 4B-1 | 6A | 6B | 6C | 6D | ||
Size | 1 | 9 | 9 | 81 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 81 | 81 | 81 | 81 | 36 | 36 | 36 | 36 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3L | 2C | 2C | 2C | 2C | 3A | 3B | 3C | 3D | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 2A | 2B | 2A | 2B | |
Type | |||||||||||||||||||||||||
648.717.1a | R | ||||||||||||||||||||||||
648.717.1b | R | ||||||||||||||||||||||||
648.717.1c | R | ||||||||||||||||||||||||
648.717.1d | R | ||||||||||||||||||||||||
648.717.1e1 | C | ||||||||||||||||||||||||
648.717.1e2 | C | ||||||||||||||||||||||||
648.717.1f1 | C | ||||||||||||||||||||||||
648.717.1f2 | C | ||||||||||||||||||||||||
648.717.4a | R | ||||||||||||||||||||||||
648.717.4b | R | ||||||||||||||||||||||||
648.717.4c | R | ||||||||||||||||||||||||
648.717.4d | R | ||||||||||||||||||||||||
648.717.4e | R | ||||||||||||||||||||||||
648.717.4f | R | ||||||||||||||||||||||||
648.717.4g | R | ||||||||||||||||||||||||
648.717.4h | R | ||||||||||||||||||||||||
648.717.8a | R | ||||||||||||||||||||||||
648.717.8b | R | ||||||||||||||||||||||||
648.717.8c | R | ||||||||||||||||||||||||
648.717.8d | R | ||||||||||||||||||||||||
648.717.8e | R | ||||||||||||||||||||||||
648.717.8f | R | ||||||||||||||||||||||||
648.717.8g | R | ||||||||||||||||||||||||
648.717.8h | R |
Regular extensions
Data not computed