Show commands: Magma
Group invariants
Abstract group: | $C_3^2:S_3^2$ |
| |
Order: | $324=2^{2} \cdot 3^{4}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $18$ |
| |
Transitive number $t$: | $135$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $3$ |
| |
Generators: | $(1,12,2,10,3,11)(4,18,6,16,5,17)(7,14,8,15,9,13)$, $(1,11,5,13,8,17)(2,12,4,14,9,18)(3,10,6,15,7,16)$, $(1,15,3,14,2,13)(4,11,5,10,6,12)(7,18,9,17,8,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 5 $12$: $D_{6}$ x 5 $18$: $C_3^2:C_2$ $36$: $S_3^2$ x 4, 18T12 $54$: $(C_3^2:C_3):C_2$ $108$: 18T52, 18T58 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $D_{6}$
Degree 9: None
Low degree siblings
18T135 x 3, 27T118 x 4, 36T507 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{18}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{9}$ | $3$ | $2$ | $9$ | $( 1,15)( 2,13)( 3,14)( 4,17)( 5,16)( 6,18)( 7,12)( 8,10)( 9,11)$ |
2B | $2^{6},1^{6}$ | $9$ | $2$ | $6$ | $( 4, 8)( 5, 7)( 6, 9)(10,17)(11,18)(12,16)$ |
2C | $2^{9}$ | $27$ | $2$ | $9$ | $( 1,10)( 2,11)( 3,12)( 4,16)( 5,18)( 6,17)( 7,15)( 8,13)( 9,14)$ |
3A1 | $3^{6}$ | $1$ | $3$ | $12$ | $( 1, 2, 3)( 4, 6, 5)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)$ |
3A-1 | $3^{6}$ | $1$ | $3$ | $12$ | $( 1, 3, 2)( 4, 5, 6)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)$ |
3B | $3^{6}$ | $2$ | $3$ | $12$ | $( 1, 3, 2)( 4, 5, 6)( 7, 9, 8)(10,11,12)(13,14,15)(16,17,18)$ |
3C1 | $3^{3},1^{9}$ | $2$ | $3$ | $6$ | $(10,12,11)(13,15,14)(16,18,17)$ |
3C-1 | $3^{3},1^{9}$ | $2$ | $3$ | $6$ | $(10,11,12)(13,14,15)(16,17,18)$ |
3D | $3^{6}$ | $6$ | $3$ | $12$ | $( 1, 8, 5)( 2, 9, 4)( 3, 7, 6)(10,16,15)(11,17,13)(12,18,14)$ |
3E | $3^{6}$ | $6$ | $3$ | $12$ | $( 1, 8, 6)( 2, 9, 5)( 3, 7, 4)(10,18,15)(11,16,13)(12,17,14)$ |
3F | $3^{6}$ | $6$ | $3$ | $12$ | $( 1, 4, 8)( 2, 6, 9)( 3, 5, 7)(10,15,17)(11,13,18)(12,14,16)$ |
3G | $3^{4},1^{6}$ | $6$ | $3$ | $8$ | $( 1, 3, 2)( 7, 8, 9)(10,11,12)(13,15,14)$ |
3H | $3^{6}$ | $12$ | $3$ | $12$ | $( 1, 7, 4)( 2, 8, 6)( 3, 9, 5)(10,16,15)(11,17,13)(12,18,14)$ |
3I | $3^{6}$ | $12$ | $3$ | $12$ | $( 1, 4, 9)( 2, 6, 7)( 3, 5, 8)(10,13,17)(11,14,18)(12,15,16)$ |
3J | $3^{4},1^{6}$ | $12$ | $3$ | $8$ | $( 1, 2, 3)( 7, 9, 8)(13,15,14)(16,17,18)$ |
3K | $3^{6}$ | $12$ | $3$ | $12$ | $( 1, 7, 6)( 2, 8, 5)( 3, 9, 4)(10,18,14)(11,16,15)(12,17,13)$ |
6A1 | $6^{3}$ | $3$ | $6$ | $15$ | $( 1,14, 2,15, 3,13)( 4,16, 6,17, 5,18)( 7,11, 8,12, 9,10)$ |
6A-1 | $6^{3}$ | $3$ | $6$ | $15$ | $( 1,13, 3,15, 2,14)( 4,18, 5,17, 6,16)( 7,10, 9,12, 8,11)$ |
6B1 | $6^{2},3^{2}$ | $9$ | $6$ | $14$ | $( 1, 2, 3)( 4, 9, 5, 8, 6, 7)(10,18,12,17,11,16)(13,14,15)$ |
6B-1 | $6^{2},3^{2}$ | $9$ | $6$ | $14$ | $( 1, 3, 2)( 4, 7, 6, 8, 5, 9)(10,16,11,17,12,18)(13,15,14)$ |
6C | $6^{3}$ | $18$ | $6$ | $15$ | $( 1,18, 8,14, 5,12)( 2,16, 9,15, 4,10)( 3,17, 7,13, 6,11)$ |
6D | $6^{3}$ | $18$ | $6$ | $15$ | $( 1,16, 8,13, 6,11)( 2,17, 9,14, 5,12)( 3,18, 7,15, 4,10)$ |
6E | $6^{2},3^{2}$ | $18$ | $6$ | $14$ | $( 1, 5, 3, 6, 2, 4)( 7, 8, 9)(10,12,11)(13,18,14,16,15,17)$ |
6F | $6^{3}$ | $18$ | $6$ | $15$ | $( 1,10, 4,15, 8,17)( 2,11, 6,13, 9,18)( 3,12, 5,14, 7,16)$ |
6G | $6^{2},2^{3}$ | $18$ | $6$ | $13$ | $( 1,15, 3,14, 2,13)( 4,16)( 5,18)( 6,17)( 7,10, 8,11, 9,12)$ |
6H1 | $6,3,2^{3},1^{3}$ | $18$ | $6$ | $10$ | $( 1, 7)( 2, 8)( 3, 9)(10,14,12,13,11,15)(16,17,18)$ |
6H-1 | $6,3,2^{3},1^{3}$ | $18$ | $6$ | $10$ | $( 1, 3, 2)( 4, 8, 6, 9, 5, 7)(10,16)(11,17)(12,18)$ |
6I1 | $6^{3}$ | $27$ | $6$ | $15$ | $( 1,12, 2,10, 3,11)( 4,18, 6,16, 5,17)( 7,14, 8,15, 9,13)$ |
6I-1 | $6^{3}$ | $27$ | $6$ | $15$ | $( 1,11, 3,10, 2,12)( 4,17, 5,16, 6,18)( 7,13, 9,15, 8,14)$ |
Malle's constant $a(G)$: $1/6$
Character table
1A | 2A | 2B | 2C | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C | 6D | 6E | 6F | 6G | 6H1 | 6H-1 | 6I1 | 6I-1 | ||
Size | 1 | 3 | 9 | 27 | 1 | 1 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 3 | 3 | 9 | 9 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 27 | 27 | |
2 P | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 3B | 3C-1 | 3C1 | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3A1 | 3A-1 | 3A-1 | 3A1 | 3D | 3E | 3B | 3F | 3G | 3C1 | 3C-1 | 3A1 | 3A-1 | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2B | 2B | 2A | 2A | 2B | 2A | 2A | 2B | 2B | 2C | 2C | |
Type | |||||||||||||||||||||||||||||||
324.122.1a | R | ||||||||||||||||||||||||||||||
324.122.1b | R | ||||||||||||||||||||||||||||||
324.122.1c | R | ||||||||||||||||||||||||||||||
324.122.1d | R | ||||||||||||||||||||||||||||||
324.122.2a | R | ||||||||||||||||||||||||||||||
324.122.2b | R | ||||||||||||||||||||||||||||||
324.122.2c | R | ||||||||||||||||||||||||||||||
324.122.2d | R | ||||||||||||||||||||||||||||||
324.122.2e | R | ||||||||||||||||||||||||||||||
324.122.2f | R | ||||||||||||||||||||||||||||||
324.122.2g | R | ||||||||||||||||||||||||||||||
324.122.2h | R | ||||||||||||||||||||||||||||||
324.122.2i | R | ||||||||||||||||||||||||||||||
324.122.2j | R | ||||||||||||||||||||||||||||||
324.122.3a1 | C | ||||||||||||||||||||||||||||||
324.122.3a2 | C | ||||||||||||||||||||||||||||||
324.122.3b1 | C | ||||||||||||||||||||||||||||||
324.122.3b2 | C | ||||||||||||||||||||||||||||||
324.122.3c1 | C | ||||||||||||||||||||||||||||||
324.122.3c2 | C | ||||||||||||||||||||||||||||||
324.122.3d1 | C | ||||||||||||||||||||||||||||||
324.122.3d2 | C | ||||||||||||||||||||||||||||||
324.122.4a | R | ||||||||||||||||||||||||||||||
324.122.4b | R | ||||||||||||||||||||||||||||||
324.122.4c | R | ||||||||||||||||||||||||||||||
324.122.4d | R | ||||||||||||||||||||||||||||||
324.122.6a1 | C | ||||||||||||||||||||||||||||||
324.122.6a2 | C | ||||||||||||||||||||||||||||||
324.122.6b1 | C | ||||||||||||||||||||||||||||||
324.122.6b2 | C |
Regular extensions
Data not computed