Show commands: Magma
Group invariants
| Abstract group: | $C_4^3.D_4$ |
| |
| Order: | $512=2^{9}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $5$ |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $974$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,8,16,11)(2,7,15,12)(3,5,13,9)(4,6,14,10)$, $(1,15,3,14,2,16,4,13)(5,9,7,12,6,10,8,11)$, $(1,9)(2,10)(3,11)(4,12)(5,14,6,13)(7,15,8,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$, $Q_8$ x 2 $16$: $D_4\times C_2$ x 3, $Q_8:C_2$ x 3, $Q_8\times C_2$ $32$: $C_2^2 \wr C_2$, 16T30 x 3, 16T31 x 3 $64$: $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 32T304 $128$: 16T333, 16T342, 16T344 $256$: 32T6140 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$
Low degree siblings
16T974 x 3, 32T10875 x 2, 32T10876 x 2, 32T10877 x 2, 32T20066 x 2, 32T20067 x 2, 32T25936, 32T26004 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| 2C | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| 2D | $2^{8}$ | $8$ | $2$ | $8$ | $( 1,16)( 2,15)( 3,13)( 4,14)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| 2E | $2^{8}$ | $8$ | $2$ | $8$ | $( 1,15)( 2,16)( 3,14)( 4,13)( 5, 9)( 6,10)( 7,12)( 8,11)$ |
| 2F | $2^{6},1^{4}$ | $16$ | $2$ | $6$ | $( 1,15)( 2,16)( 3,13)( 4,14)( 7, 8)( 9,10)$ |
| 2G | $2^{8}$ | $16$ | $2$ | $8$ | $( 1,15)( 2,16)( 3,13)( 4,14)( 5, 8)( 6, 7)( 9,11)(10,12)$ |
| 4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,12,10,11)(13,16,14,15)$ |
| 4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,11,10,12)(13,16,14,15)$ |
| 4C | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| 4D | $4^{2},2^{4}$ | $4$ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,14)(15,16)$ |
| 4E | $4^{2},1^{8}$ | $4$ | $4$ | $6$ | $( 5, 7, 6, 8)( 9,11,10,12)$ |
| 4F | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12,10,11)(13,15,14,16)$ |
| 4G | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 5, 8, 6, 7)( 9,11,10,12)(13,14)(15,16)$ |
| 4H | $4^{2},1^{8}$ | $8$ | $4$ | $6$ | $( 9,11,10,12)(13,16,14,15)$ |
| 4I | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,15, 2,16)( 3,14, 4,13)( 5, 9, 6,10)( 7,12, 8,11)$ |
| 4J | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,14, 2,13)( 3,16, 4,15)( 5, 9, 6,10)( 7,12, 8,11)$ |
| 4K1 | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,10)(11,12)$ |
| 4K-1 | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 1, 2)( 3, 4)( 9,11,10,12)(13,15,14,16)$ |
| 4L | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1,13, 2,14)( 3,16, 4,15)( 5, 8)( 6, 7)( 9,11)(10,12)$ |
| 4M | $4^{2},2^{2},1^{4}$ | $16$ | $4$ | $8$ | $( 1,16, 2,15)( 3,14, 4,13)( 7, 8)(11,12)$ |
| 4N | $4^{2},2^{4}$ | $32$ | $4$ | $10$ | $( 1, 9, 2,10)( 3,11, 4,12)( 5,16)( 6,15)( 7,14)( 8,13)$ |
| 4O | $4^{2},2^{4}$ | $32$ | $4$ | $10$ | $( 1,10, 2, 9)( 3,12, 4,11)( 5,13)( 6,14)( 7,16)( 8,15)$ |
| 4P1 | $4^{4}$ | $32$ | $4$ | $12$ | $( 1,12,15, 7)( 2,11,16, 8)( 3,10,14, 6)( 4, 9,13, 5)$ |
| 4P-1 | $4^{4}$ | $32$ | $4$ | $12$ | $( 1, 7,15,12)( 2, 8,16,11)( 3, 6,14,10)( 4, 5,13, 9)$ |
| 8A1 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1, 6, 4, 8, 2, 5, 3, 7)( 9,15,12,13,10,16,11,14)$ |
| 8A-1 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1, 7, 3, 5, 2, 8, 4, 6)( 9,13,11,15,10,14,12,16)$ |
| 8B1 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1, 5, 4, 7, 2, 6, 3, 8)( 9,14,12,15,10,13,11,16)$ |
| 8B-1 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1, 8, 3, 6, 2, 7, 4, 5)( 9,15,11,14,10,16,12,13)$ |
| 8C | $8^{2}$ | $32$ | $8$ | $14$ | $( 1,15, 4,13, 2,16, 3,14)( 5,11, 8,10, 6,12, 7, 9)$ |
| 8D1 | $8,2^{3},1^{2}$ | $32$ | $8$ | $10$ | $( 1, 3)( 2, 4)( 5,10, 7,12, 6, 9, 8,11)(15,16)$ |
| 8D-1 | $8,2^{3},1^{2}$ | $32$ | $8$ | $10$ | $( 1, 3)( 2, 4)( 5,11, 8, 9, 6,12, 7,10)(15,16)$ |
| 8E1 | $8^{2}$ | $32$ | $8$ | $14$ | $( 1, 9,14, 6, 2,10,13, 5)( 3,12,16, 8, 4,11,15, 7)$ |
| 8E-1 | $8^{2}$ | $32$ | $8$ | $14$ | $( 1, 5,13,10, 2, 6,14, 9)( 3, 7,15,11, 4, 8,16,12)$ |
Malle's constant $a(G)$: $1/4$
Character table
35 x 35 character table
Regular extensions
Data not computed