Show commands: Magma
Group invariants
| Abstract group: | $C_2^6.D_4$ |
| |
| Order: | $512=2^{9}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $4$ |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $940$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,8,11,15,4,6,10,14)(2,7,12,16,3,5,9,13)$, $(1,15)(2,16)(3,13)(4,14)(5,12,6,11)(7,9,8,10)$, $(1,5,9,14,4,7,12,15)(2,6,10,13,3,8,11,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$ $32$: $C_2^2 \wr C_2$, $C_2^3 : C_4 $ x 4, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37 $64$: $(C_4^2 : C_2):C_2$ x 2, $((C_8 : C_2):C_2):C_2$ x 2, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T76 x 2, 32T239 $128$: 16T219, 16T222, 16T227, 16T230, 16T234, 16T235, 16T302 $256$: 32T3918, 32T4019, 32T4050 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $(C_4^2 : C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$
Low degree siblings
16T940 x 31, 32T10678 x 8, 32T10679 x 8, 32T10680 x 8, 32T10681 x 8, 32T10682 x 8, 32T10683 x 8, 32T10684 x 8, 32T18651 x 4, 32T18656 x 4, 32T18658 x 4, 32T18667 x 4, 32T19251 x 4, 32T19263 x 4, 32T19274 x 4, 32T19276 x 4, 32T19312 x 4, 32T19326 x 4, 32T19327 x 4, 32T19328 x 4, 32T19469 x 4, 32T19689 x 4, 32T19693 x 4, 32T20170 x 4, 32T20208 x 4, 32T20230 x 4, 32T20242 x 4, 32T20307 x 4, 32T20615 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)$ |
| 2B | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 2C | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)$ |
| 2D | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 6)( 7, 8)( 9,12)(10,11)(13,14)(15,16)$ |
| 2E | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 6)( 7, 8)( 9,11)(10,12)(13,14)(15,16)$ |
| 2F | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| 2G | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 1, 3)( 2, 4)( 9,11)(10,12)$ |
| 2H | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 1, 4)( 2, 3)( 9,12)(10,11)$ |
| 2I | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 1, 2)( 3, 4)( 9,10)(11,12)$ |
| 2J | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| 2K | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,16)(14,15)$ |
| 2L | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 9,11)(10,12)(13,15)(14,16)$ |
| 2M | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 9,12)(10,11)(13,16)(14,15)$ |
| 2N | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| 2O | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| 2P | $2^{6},1^{4}$ | $8$ | $2$ | $6$ | $( 1, 4)( 2, 3)( 9,11)(10,12)(13,14)(15,16)$ |
| 2Q | $2^{6},1^{4}$ | $8$ | $2$ | $6$ | $( 5, 6)( 7, 8)( 9,12)(10,11)(13,15)(14,16)$ |
| 2R | $2^{6},1^{4}$ | $8$ | $2$ | $6$ | $( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| 2S | $2^{8}$ | $16$ | $2$ | $8$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5, 6)( 7, 8)(13,16)(14,15)$ |
| 2T | $2^{6},1^{4}$ | $16$ | $2$ | $6$ | $( 1,10)( 2, 9)( 3,12)( 4,11)(13,15)(14,16)$ |
| 2U | $2^{8}$ | $16$ | $2$ | $8$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,15)( 6,16)( 7,14)( 8,13)$ |
| 4A | $4^{2},1^{8}$ | $8$ | $4$ | $6$ | $( 1, 9, 3,11)( 2,10, 4,12)$ |
| 4B | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 9, 3,11)( 2,10, 4,12)( 5, 6)( 7, 8)(13,14)(15,16)$ |
| 4C | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 9, 3,11)( 2,10, 4,12)( 5, 7)( 6, 8)(13,16)(14,15)$ |
| 4D | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 9, 3,11)( 2,10, 4,12)( 5, 8)( 6, 7)(13,15)(14,16)$ |
| 4E | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 9, 3,11)( 2,10, 4,12)( 5,16, 8,14)( 6,15, 7,13)$ |
| 4F | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,12, 3,10)( 2,11, 4, 9)( 5,16, 8,14)( 6,15, 7,13)$ |
| 4G | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,11, 4,10)( 2,12, 3, 9)( 5,13, 7,16)( 6,14, 8,15)$ |
| 4H | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,12, 4, 9)( 2,11, 3,10)( 5,15, 7,14)( 6,16, 8,13)$ |
| 4I | $4^{2},2^{2},1^{4}$ | $16$ | $4$ | $8$ | $( 1, 9, 4,12)( 2,10, 3,11)(13,14)(15,16)$ |
| 4J | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1,10, 2, 9)( 3,12, 4,11)( 5, 6)( 7, 8)(13,15)(14,16)$ |
| 4K | $4^{2},2^{2},1^{4}$ | $16$ | $4$ | $8$ | $( 1,10, 2, 9)( 3,12, 4,11)(13,16)(14,15)$ |
| 4L | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 9, 4,12)( 2,10, 3,11)( 5, 7)( 6, 8)(13,15)(14,16)$ |
| 4M | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,10, 2, 9)( 3,12, 4,11)( 5,15, 6,16)( 7,14, 8,13)$ |
| 4N1 | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,16,10,15)(11,14,12,13)$ |
| 4N-1 | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,15,10,16)(11,13,12,14)$ |
| 4O1 | $4^{4}$ | $16$ | $4$ | $12$ | $( 1, 8, 4, 6)( 2, 7, 3, 5)( 9,13,11,15)(10,14,12,16)$ |
| 4O-1 | $4^{4}$ | $16$ | $4$ | $12$ | $( 1, 8, 4, 6)( 2, 7, 3, 5)( 9,14,11,16)(10,13,12,15)$ |
| 4P1 | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,14,10,13)(11,16,12,15)$ |
| 4P-1 | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,13,10,14)(11,15,12,16)$ |
| 4Q1 | $4^{4}$ | $16$ | $4$ | $12$ | $( 1, 7, 4, 5)( 2, 8, 3, 6)( 9,15,11,13)(10,16,12,14)$ |
| 4Q-1 | $4^{4}$ | $16$ | $4$ | $12$ | $( 1, 7, 4, 5)( 2, 8, 3, 6)( 9,16,11,14)(10,15,12,13)$ |
| 8A1 | $8^{2}$ | $32$ | $8$ | $14$ | $( 1,15,11, 6, 4,14,10, 8)( 2,16,12, 5, 3,13, 9, 7)$ |
| 8A-1 | $8^{2}$ | $32$ | $8$ | $14$ | $( 1, 8,10,14, 4, 6,11,15)( 2, 7, 9,13, 3, 5,12,16)$ |
| 8B1 | $8^{2}$ | $32$ | $8$ | $14$ | $( 1, 6,12,16, 4, 8, 9,13)( 2, 5,11,15, 3, 7,10,14)$ |
| 8B-1 | $8^{2}$ | $32$ | $8$ | $14$ | $( 1,13, 9, 8, 4,16,12, 6)( 2,14,10, 7, 3,15,11, 5)$ |
Malle's constant $a(G)$: $1/4$
Character table
47 x 47 character table
Regular extensions
Data not computed