Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $9$ | |
| Group : | $D_4\times C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,3)(2,4)(5,15)(6,16)(7,11)(8,12)(9,13)(10,14), (1,11,16,14)(2,12,15,13)(3,10,6,7)(4,9,5,8), (1,13)(2,14)(3,8)(4,7)(5,10)(6,9)(11,15)(12,16) | |
| $|\Aut(F/K)|$: | $16$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 7
Degree 4: $C_2^2$ x 7, $D_{4}$ x 4
Degree 8: $C_2^3$, $D_4$ x 2, $D_4\times C_2$ x 4
Low degree siblings
8T9 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 9)( 8,10)(11,13)(12,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,11)( 8,12)( 9,13)(10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,13)( 8,14)( 9,11)(10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 5)( 2, 6)( 3,15)( 4,16)( 7,12)( 8,11)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 7)( 2, 8)( 3,14)( 4,13)( 5,12)( 6,11)( 9,15)(10,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 8,16, 9)( 2, 7,15,10)( 3,13, 6,12)( 4,14, 5,11)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,11,16,14)( 2,12,15,13)( 3,10, 6, 7)( 4, 9, 5, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,12)( 2,11)( 3, 9)( 4,10)( 5, 7)( 6, 8)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,16)( 2,15)( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)$ |
Group invariants
| Order: | $16=2^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [16, 11] |
| Character table: |
2 4 3 3 4 4 3 3 3 3 4
1a 2a 2b 2c 2d 2e 4a 4b 2f 2g
2P 1a 1a 1a 1a 1a 1a 2g 2g 1a 1a
3P 1a 2a 2b 2c 2d 2e 4a 4b 2f 2g
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 1 1 -1 1
X.3 1 -1 -1 1 1 1 -1 -1 1 1
X.4 1 -1 1 -1 -1 -1 1 -1 1 1
X.5 1 -1 1 -1 -1 1 -1 1 -1 1
X.6 1 1 -1 -1 -1 -1 -1 1 1 1
X.7 1 1 -1 -1 -1 1 1 -1 -1 1
X.8 1 1 1 1 1 -1 -1 -1 -1 1
X.9 2 . . 2 -2 . . . . -2
X.10 2 . . -2 2 . . . . -2
|