Show commands: Magma
Group invariants
| Abstract group: | $C_8^2:(C_2\times C_4)$ |
| |
| Order: | $512=2^{9}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $4$ |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $892$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(5,15,7,14,6,16,8,13)$, $(1,2)(5,6)(9,12)(10,11)(13,15)(14,16)$, $(1,14,11,5,3,15,10,8,2,13,12,6,4,16,9,7)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$ $32$: $C_2^2 \wr C_2$, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37 $64$: $(C_4^2 : C_2):C_2$ x 2, 32T239 $128$: 16T221 x 2, 16T302 $256$: 32T3905 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $(C_4^2 : C_2):C_2$
Low degree siblings
16T892 x 7, 32T10424 x 4, 32T10425 x 4, 32T10426 x 4, 32T10427 x 4, 32T10428 x 4, 32T10429 x 4, 32T10430 x 4, 32T19720 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| 2C | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $(1,2)(3,4)(5,6)(7,8)$ |
| 2D | $2^{6},1^{4}$ | $16$ | $2$ | $6$ | $( 3, 4)( 7, 8)( 9,12)(10,11)(13,15)(14,16)$ |
| 2E | $2^{8}$ | $16$ | $2$ | $8$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 5,14)( 6,13)( 7,15)( 8,16)$ |
| 2F | $2^{6},1^{4}$ | $16$ | $2$ | $6$ | $( 1, 4)( 2, 3)( 5, 6)(11,12)(13,15)(14,16)$ |
| 2G | $2^{7},1^{2}$ | $32$ | $2$ | $7$ | $( 3, 4)( 5,15)( 6,16)( 7,13)( 8,14)( 9,12)(10,11)$ |
| 4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| 4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,16,14,15)$ |
| 4C | $4^{2},1^{8}$ | $4$ | $4$ | $6$ | $( 1, 3, 2, 4)( 9,11,10,12)$ |
| 4D | $4^{2},2^{4}$ | $4$ | $4$ | $10$ | $( 1, 4, 2, 3)( 5, 6)( 7, 8)( 9,12,10,11)(13,14)(15,16)$ |
| 4E | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)$ |
| 4F | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 5, 7, 6, 8)( 9,10)(11,12)(13,16,14,15)$ |
| 4G | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,11, 2,12)( 3, 9, 4,10)( 5,15, 6,16)( 7,13, 8,14)$ |
| 4H1 | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,13)(10,14)(11,16)(12,15)$ |
| 4H-1 | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1,14)( 2,13)( 3,15)( 4,16)( 5,12, 6,11)( 7,10, 8, 9)$ |
| 4I1 | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,15,10,16)(11,14,12,13)$ |
| 4I-1 | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1,16, 2,15)( 3,13, 4,14)( 5,11)( 6,12)( 7,10)( 8, 9)$ |
| 4J | $4^{2},2^{3},1^{2}$ | $32$ | $4$ | $9$ | $( 3, 4)( 5,14, 6,13)( 7,15, 8,16)( 9,11)(10,12)$ |
| 8A | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,11, 4, 9, 2,12, 3,10)( 5,14, 8,15, 6,13, 7,16)$ |
| 8B | $8,1^{8}$ | $8$ | $8$ | $7$ | $( 1,10, 3,12, 2, 9, 4,11)$ |
| 8C | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,10, 3,12, 2, 9, 4,11)( 5,14, 8,15, 6,13, 7,16)$ |
| 8D | $8,2^{4}$ | $8$ | $8$ | $11$ | $( 1, 9, 3,11, 2,10, 4,12)( 5, 6)( 7, 8)(13,14)(15,16)$ |
| 8E | $8,4^{2}$ | $8$ | $8$ | $13$ | $( 1,11, 4, 9, 2,12, 3,10)( 5, 8, 6, 7)(13,16,14,15)$ |
| 8F | $8,4^{2}$ | $8$ | $8$ | $13$ | $( 1,12, 4,10, 2,11, 3, 9)( 5, 7, 6, 8)(13,15,14,16)$ |
| 8G | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,10, 4,11, 2, 9, 3,12)( 5,14, 7,16, 6,13, 8,15)$ |
| 8H | $8^{2}$ | $8$ | $8$ | $14$ | $( 1, 9, 4,12, 2,10, 3,11)( 5,16, 8,14, 6,15, 7,13)$ |
| 8I | $8,4^{2}$ | $16$ | $8$ | $13$ | $( 1, 3, 2, 4)( 5,13, 7,15, 6,14, 8,16)( 9,12,10,11)$ |
| 8J | $8,2^{2},1^{4}$ | $16$ | $8$ | $9$ | $( 5,16, 8,14, 6,15, 7,13)( 9,10)(11,12)$ |
| 8K1 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1, 6, 3, 7, 2, 5, 4, 8)( 9,13,12,15,10,14,11,16)$ |
| 8K-1 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1,14, 3,15, 2,13, 4,16)( 5, 9, 7,12, 6,10, 8,11)$ |
| 8L1 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1,13, 4,16, 2,14, 3,15)( 5,12, 7, 9, 6,11, 8,10)$ |
| 8L-1 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1, 5, 4, 8, 2, 6, 3, 7)( 9,15,11,14,10,16,12,13)$ |
| 16A1 | $16$ | $32$ | $16$ | $15$ | $( 1, 7,10,16, 4, 6,11,13, 2, 8, 9,15, 3, 5,12,14)$ |
| 16A-1 | $16$ | $32$ | $16$ | $15$ | $( 1,14,12, 5, 3,15, 9, 8, 2,13,11, 6, 4,16,10, 7)$ |
| 16B1 | $16$ | $32$ | $16$ | $15$ | $( 1,13, 9, 5, 4,16,12, 8, 2,14,10, 6, 3,15,11, 7)$ |
| 16B-1 | $16$ | $32$ | $16$ | $15$ | $( 1, 7,11,15, 3, 6,10,14, 2, 8,12,16, 4, 5, 9,13)$ |
Malle's constant $a(G)$: $1/4$
Character table
38 x 38 character table
Regular extensions
Data not computed