Show commands: Magma
Group invariants
| Abstract group: | $C_2^6.D_4$ |
| |
| Order: | $512=2^{9}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $4$ |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $830$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(3,4)(5,10,6,9)(7,11,8,12)(13,14)$, $(1,6,16,11,2,5,15,12)(3,8,13,9,4,7,14,10)$, $(1,2)(5,9,8,11)(6,10,7,12)(13,15,14,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$ $32$: $C_2^2 \wr C_2$, $C_2^3 : C_4 $ x 4, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37 $64$: $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T76 x 2, 32T239 $128$: 16T208, 16T218, 16T230 $256$: 32T3729 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$
Low degree siblings
16T830 x 7, 16T835 x 4, 16T848 x 4, 16T887 x 8, 32T9983 x 8, 32T9984 x 4, 32T9985 x 8, 32T9986 x 8, 32T9987 x 4, 32T10025 x 8, 32T10026 x 2, 32T10027 x 2, 32T10028 x 4, 32T10029 x 4, 32T10030 x 4, 32T10031 x 8, 32T10032 x 4, 32T10033 x 4, 32T10034 x 4, 32T10035 x 4, 32T10036 x 4, 32T10037 x 8, 32T10038 x 4, 32T10143 x 4, 32T10144 x 8, 32T10145 x 2, 32T10146 x 4, 32T10147 x 4, 32T10148 x 2, 32T10149 x 4, 32T10398 x 4, 32T10399 x 8, 32T10400 x 8, 32T10401 x 4, 32T19840 x 2, 32T20072 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 2B | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,15)(14,16)$ |
| 2C | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| 2D | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| 2E | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,14)(15,16)$ |
| 2F | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,14)(15,16)$ |
| 2G | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $(1,4)(2,3)(5,7)(6,8)$ |
| 2H | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 5, 8)( 6, 7)( 9,12)(10,11)$ |
| 2I | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 7)( 6, 8)( 9,10)(11,12)(13,15)(14,16)$ |
| 2J | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 9,12)(10,11)(13,16)(14,15)$ |
| 2K | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,15)(14,16)$ |
| 2L | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 1, 2)( 3, 4)( 9,10)(11,12)$ |
| 2M | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 4)( 2, 3)( 9,10)(11,12)(13,16)(14,15)$ |
| 2N | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 5, 7)( 6, 8)( 9,12)(10,11)$ |
| 2O | $2^{6},1^{4}$ | $8$ | $2$ | $6$ | $( 1, 3)( 2, 4)( 9,11)(10,12)(13,14)(15,16)$ |
| 2P | $2^{6},1^{4}$ | $8$ | $2$ | $6$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,10)(11,12)$ |
| 2Q | $2^{8}$ | $8$ | $2$ | $8$ | $( 1,14)( 2,13)( 3,15)( 4,16)( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| 2R | $2^{8}$ | $8$ | $2$ | $8$ | $( 1,16)( 2,15)( 3,13)( 4,14)( 5,10)( 6, 9)( 7,12)( 8,11)$ |
| 2S | $2^{6},1^{4}$ | $16$ | $2$ | $6$ | $( 1,14)( 2,13)( 3,16)( 4,15)( 5, 6)( 9,10)$ |
| 4A | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,16, 2,15)( 3,13, 4,14)( 5,10, 6, 9)( 7,12, 8,11)$ |
| 4B | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,13, 2,14)( 3,16, 4,15)( 5,10, 6, 9)( 7,12, 8,11)$ |
| 4C | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1,13)( 2,14)( 3,15)( 4,16)( 5, 7, 6, 8)( 9,11,10,12)$ |
| 4D | $4^{2},2^{2},1^{4}$ | $16$ | $4$ | $8$ | $( 1,15, 2,16)( 3,13, 4,14)( 7, 8)(11,12)$ |
| 4E | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,16, 2,15)( 3,14, 4,13)( 5, 8, 6, 7)( 9,12,10,11)$ |
| 4F | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,15, 4,13)( 2,16, 3,14)( 5,10, 7,12)( 6, 9, 8,11)$ |
| 4G | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,16, 4,14)( 2,15, 3,13)( 5,11, 7, 9)( 6,12, 8,10)$ |
| 4H1 | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,11, 3,10)( 2,12, 4, 9)( 5,14, 7,16)( 6,13, 8,15)$ |
| 4H-1 | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,10, 3,11)( 2, 9, 4,12)( 5,16, 7,14)( 6,15, 8,13)$ |
| 4I1 | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1,12, 2,11)( 3, 9, 4,10)( 5,15)( 6,16)( 7,13)( 8,14)$ |
| 4I-1 | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,13)( 6,14)( 7,15)( 8,16)$ |
| 4J1 | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,10, 3,11)( 2, 9, 4,12)( 5,13, 7,15)( 6,14, 8,16)$ |
| 4J-1 | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,11, 3,10)( 2,12, 4, 9)( 5,15, 7,13)( 6,16, 8,14)$ |
| 4K1 | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,16)( 6,15)( 7,14)( 8,13)$ |
| 4K-1 | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1,12, 2,11)( 3, 9, 4,10)( 5,14)( 6,13)( 7,16)( 8,15)$ |
| 4L | $4^{3},2,1^{2}$ | $32$ | $4$ | $10$ | $( 1,16, 4,13)( 2,15, 3,14)( 5, 6)( 9,11,10,12)$ |
| 4M | $4^{3},2,1^{2}$ | $32$ | $4$ | $10$ | $( 1, 3, 2, 4)( 5,11, 7,10)( 6,12, 8, 9)(15,16)$ |
| 4N1 | $4^{4}$ | $32$ | $4$ | $12$ | $( 1, 6,16, 9)( 2, 5,15,10)( 3, 8,13,11)( 4, 7,14,12)$ |
| 4N-1 | $4^{4}$ | $32$ | $4$ | $12$ | $( 1, 9,16, 6)( 2,10,15, 5)( 3,11,13, 8)( 4,12,14, 7)$ |
| 8A1 | $8^{2}$ | $32$ | $8$ | $14$ | $( 1, 7,13,12, 2, 8,14,11)( 3, 5,16,10, 4, 6,15, 9)$ |
| 8A-1 | $8^{2}$ | $32$ | $8$ | $14$ | $( 1,11,14, 8, 2,12,13, 7)( 3, 9,15, 6, 4,10,16, 5)$ |
Malle's constant $a(G)$: $1/4$
Character table
41 x 41 character table
Regular extensions
Data not computed