Show commands: Magma
Group invariants
Abstract group: | $C_2^6:C_2^3$ |
| |
Order: | $512=2^{9}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $3$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $794$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,6)(2,5)(3,7)(4,8)(9,14)(10,13)(11,16)(12,15)$, $(1,2)(3,4)$, $(1,8,2,7)(3,6,4,5)(9,12,10,11)(13,15,14,16)$, $(9,10)(13,14)$, $(1,14)(2,13)(3,12,4,11)(5,9,6,10)(7,15)(8,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 31 $4$: $C_2^2$ x 155 $8$: $D_{4}$ x 24, $C_2^3$ x 155 $16$: $D_4\times C_2$ x 84, $C_2^4$ x 31 $32$: $C_2^2 \wr C_2$ x 16, $Q_8:C_2^2$ x 8, $C_2^2 \times D_4$ x 42, 32T39 $64$: 16T69 x 4, 16T105 x 12, 32T273 x 3 $128$: 16T198 x 6, 32T1369 $256$: 32T3426 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 7
Degree 4: $C_2^2$ x 7
Degree 8: $C_2^3$
Low degree siblings
16T794 x 3, 16T804 x 12, 16T808 x 8, 16T809 x 16, 32T9708 x 6, 32T9709 x 12, 32T9710 x 24, 32T9711 x 6, 32T9712 x 16, 32T9713 x 12, 32T9786 x 24, 32T9787 x 24, 32T9788 x 6, 32T9789 x 12, 32T9790 x 12, 32T9791 x 6, 32T9792 x 12, 32T9811 x 12, 32T9812 x 24, 32T9813 x 12, 32T9814 x 24, 32T9815 x 24, 32T20119 x 12Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
68 x 68 character table
Regular extensions
Data not computed