Show commands: Magma
Group invariants
| Abstract group: | $C_2^5:A_4$ |
| |
| Order: | $384=2^{7} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $731$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,9,8)(2,12,5)(3,10,6)(4,11,7)(13,15,14)$, $(1,5,16,4,8,15)(2,7,13,3,6,14)(10,12,11)$, $(1,6,3,7)(2,5,4,8)(9,15,11,14)(10,16,12,13)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $12$: $A_4$ x 5 $24$: $A_4\times C_2$ x 5 $48$: $C_2^4:C_3$ $96$: 12T56 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $A_4$
Degree 8: None
Low degree siblings
16T731 x 3, 24T730 x 2, 24T983 x 2, 24T997 x 2, 24T1024 x 4, 24T1025 x 2, 32T9324 x 2, 32T9338 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $3$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,12)(10,11)(13,15)(14,16)$ |
| 2B | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 5, 6)( 7, 8)( 9,12)(10,11)(13,16)(14,15)$ |
| 2C | $2^{4},1^{8}$ | $6$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| 2D | $2^{8}$ | $6$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| 2E | $2^{6},1^{4}$ | $12$ | $2$ | $6$ | $( 5, 6)( 7, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| 2F | $2^{8}$ | $12$ | $2$ | $8$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5, 9)( 6,10)( 7,12)( 8,11)$ |
| 2G | $2^{8}$ | $12$ | $2$ | $8$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5,11)( 6,12)( 7,10)( 8, 9)$ |
| 3A1 | $3^{5},1$ | $64$ | $3$ | $10$ | $( 1, 2, 3)( 5,12,13)( 6, 9,16)( 7,10,14)( 8,11,15)$ |
| 3A-1 | $3^{5},1$ | $64$ | $3$ | $10$ | $( 1, 3, 2)( 5,13,12)( 6,16, 9)( 7,14,10)( 8,15,11)$ |
| 4A | $4^{4}$ | $12$ | $4$ | $12$ | $( 1, 5, 4, 7)( 2, 6, 3, 8)( 9,14,12,16)(10,13,11,15)$ |
| 4B | $4^{4}$ | $12$ | $4$ | $12$ | $( 1, 5, 3, 8)( 2, 6, 4, 7)( 9,15,11,14)(10,16,12,13)$ |
| 4C | $4^{4}$ | $12$ | $4$ | $12$ | $( 1,13, 3,16)( 2,14, 4,15)( 5,12, 8,10)( 6,11, 7, 9)$ |
| 4D | $4^{4}$ | $12$ | $4$ | $12$ | $( 1, 5, 3, 8)( 2, 6, 4, 7)( 9,16,11,13)(10,15,12,14)$ |
| 4E | $4^{4}$ | $12$ | $4$ | $12$ | $( 1, 5, 4, 7)( 2, 6, 3, 8)( 9,13,12,15)(10,14,11,16)$ |
| 4F | $4^{4}$ | $12$ | $4$ | $12$ | $( 1,13, 3,16)( 2,14, 4,15)( 5,10, 8,12)( 6, 9, 7,11)$ |
| 6A1 | $6^{2},3,1$ | $64$ | $6$ | $12$ | $( 1, 3, 2)( 5,16,12, 6,13, 9)( 7,15,10, 8,14,11)$ |
| 6A-1 | $6^{2},3,1$ | $64$ | $6$ | $12$ | $( 1, 2, 3)( 5, 9,13, 6,12,16)( 7,11,14, 8,10,15)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A1 | 3A-1 | 4A | 4B | 4C | 4D | 4E | 4F | 6A1 | 6A-1 | ||
| Size | 1 | 3 | 4 | 6 | 6 | 12 | 12 | 12 | 64 | 64 | 12 | 12 | 12 | 12 | 12 | 12 | 64 | 64 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 2A | 2A | 2A | 2A | 2A | 2A | 3A1 | 3A-1 | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 1A | 1A | 4A | 4B | 4C | 4D | 4E | 4F | 2B | 2B | |
| Type | |||||||||||||||||||
| 384.18235.1a | R | ||||||||||||||||||
| 384.18235.1b | R | ||||||||||||||||||
| 384.18235.1c1 | C | ||||||||||||||||||
| 384.18235.1c2 | C | ||||||||||||||||||
| 384.18235.1d1 | C | ||||||||||||||||||
| 384.18235.1d2 | C | ||||||||||||||||||
| 384.18235.3a | R | ||||||||||||||||||
| 384.18235.3b | R | ||||||||||||||||||
| 384.18235.3c | R | ||||||||||||||||||
| 384.18235.3d | R | ||||||||||||||||||
| 384.18235.3e | R | ||||||||||||||||||
| 384.18235.3f | R | ||||||||||||||||||
| 384.18235.3g | R | ||||||||||||||||||
| 384.18235.3h | R | ||||||||||||||||||
| 384.18235.3i | R | ||||||||||||||||||
| 384.18235.3j | R | ||||||||||||||||||
| 384.18235.12a | R | ||||||||||||||||||
| 384.18235.12b | R |
Regular extensions
Data not computed