Show commands: Magma
Group invariants
| Abstract group: | $D_4^2:C_2^2$ |
| |
| Order: | $256=2^{8}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $5$ |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $696$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,8)(2,7)(3,5)(4,6)(9,14,10,13)(11,15,12,16)$, $(3,8)(4,7)(5,6)(9,13)(10,14)(11,12)$, $(1,16)(2,15)(3,10)(4,9)(5,12)(6,11)(7,13)(8,14)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 3 $32$: $C_2^2 \wr C_2$ $64$: $(((C_4 \times C_2): C_2):C_2):C_2$ $128$: $C_2 \wr C_2\wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$
Low degree siblings
16T659 x 2, 16T665 x 2, 16T696, 32T3217, 32T3218 x 4, 32T3219, 32T3220 x 4, 32T3221, 32T3241 x 2, 32T3242, 32T3243, 32T3344, 32T3345, 32T6289 x 4, 32T7363Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $(1,2)(3,4)(5,6)(7,8)$ |
| 2C | $2^{8}$ | $8$ | $2$ | $8$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,14)( 6,13)( 7,15)( 8,16)$ |
| 2D | $2^{8}$ | $8$ | $2$ | $8$ | $( 1,11)( 2,12)( 3,13)( 4,14)( 5,16)( 6,15)( 7, 9)( 8,10)$ |
| 2E | $2^{4},1^{8}$ | $8$ | $2$ | $4$ | $( 9,11)(10,12)(13,15)(14,16)$ |
| 2F | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,16)(14,15)$ |
| 2G | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,15)(10,16)(11,14)(12,13)$ |
| 2H | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,11)(10,12)(13,15)(14,16)$ |
| 2I | $2^{6},1^{4}$ | $16$ | $2$ | $6$ | $( 1, 2)( 3, 7)( 4, 8)( 9,13)(10,14)(11,12)$ |
| 4A | $4^{2},2^{4}$ | $4$ | $4$ | $10$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 4B | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,14,10,13)(11,15,12,16)$ |
| 4C | $4^{2},1^{8}$ | $4$ | $4$ | $6$ | $(1,5,2,6)(3,8,4,7)$ |
| 4D | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,10, 2, 9)( 3,11, 4,12)( 5,14, 6,13)( 7,15, 8,16)$ |
| 4E | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,11, 2,12)( 3,13, 4,14)( 5,16, 6,15)( 7, 9, 8,10)$ |
| 4F | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,15)(10,16)(11,14)(12,13)$ |
| 4G | $4^{4}$ | $32$ | $4$ | $12$ | $( 1,13, 7,12)( 2,14, 8,11)( 3,15, 6, 9)( 4,16, 5,10)$ |
| 4H | $4^{4}$ | $32$ | $4$ | $12$ | $( 1,11, 7, 9)( 2,12, 8,10)( 3,13, 6,15)( 4,14, 5,16)$ |
| 8A1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1, 8, 5, 4, 2, 7, 6, 3)( 9,12,14,16,10,11,13,15)$ |
| 8A3 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1, 7, 5, 3, 2, 8, 6, 4)( 9,11,14,15,10,12,13,16)$ |
| 8B | $8^{2}$ | $8$ | $8$ | $14$ | $( 1, 7, 5, 3, 2, 8, 6, 4)( 9,12,14,16,10,11,13,15)$ |
| 8C | $8^{2}$ | $16$ | $8$ | $14$ | $( 1,10, 5,14, 2, 9, 6,13)( 3,11, 8,16, 4,12, 7,15)$ |
| 8D | $8^{2}$ | $16$ | $8$ | $14$ | $( 1,11, 5,16, 2,12, 6,15)( 3,13, 8,10, 4,14, 7, 9)$ |
| 8E1 | $8,2^{3},1^{2}$ | $16$ | $8$ | $10$ | $( 1, 8, 5, 4, 2, 7, 6, 3)( 9,13)(10,14)(11,12)$ |
| 8E3 | $8,2^{3},1^{2}$ | $16$ | $8$ | $10$ | $( 1, 7, 5, 3, 2, 8, 6, 4)( 9,14)(10,13)(15,16)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A1 | 8A3 | 8B | 8C | 8D | 8E1 | 8E3 | ||
| Size | 1 | 1 | 2 | 8 | 8 | 8 | 8 | 8 | 8 | 16 | 4 | 4 | 4 | 8 | 8 | 16 | 32 | 32 | 4 | 4 | 8 | 16 | 16 | 16 | 16 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2B | 2A | 2B | 2A | 2A | 2B | 2G | 2H | 4B | 4B | 4B | 4B | 4B | 4C | 4C | |
| Type | ||||||||||||||||||||||||||
| 256.6661.1a | R | |||||||||||||||||||||||||
| 256.6661.1b | R | |||||||||||||||||||||||||
| 256.6661.1c | R | |||||||||||||||||||||||||
| 256.6661.1d | R | |||||||||||||||||||||||||
| 256.6661.1e | R | |||||||||||||||||||||||||
| 256.6661.1f | R | |||||||||||||||||||||||||
| 256.6661.1g | R | |||||||||||||||||||||||||
| 256.6661.1h | R | |||||||||||||||||||||||||
| 256.6661.2a | R | |||||||||||||||||||||||||
| 256.6661.2b | R | |||||||||||||||||||||||||
| 256.6661.2c | R | |||||||||||||||||||||||||
| 256.6661.2d | R | |||||||||||||||||||||||||
| 256.6661.2e | R | |||||||||||||||||||||||||
| 256.6661.2f | R | |||||||||||||||||||||||||
| 256.6661.4a | R | |||||||||||||||||||||||||
| 256.6661.4b | R | |||||||||||||||||||||||||
| 256.6661.4c | R | |||||||||||||||||||||||||
| 256.6661.4d | R | |||||||||||||||||||||||||
| 256.6661.4e | R | |||||||||||||||||||||||||
| 256.6661.4f | R | |||||||||||||||||||||||||
| 256.6661.4g1 | R | |||||||||||||||||||||||||
| 256.6661.4g2 | R | |||||||||||||||||||||||||
| 256.6661.4h1 | R | |||||||||||||||||||||||||
| 256.6661.4h2 | R | |||||||||||||||||||||||||
| 256.6661.8a | R |
Regular extensions
Data not computed