Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $6$ | |
| Group : | $C_8: C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,9)(2,10)(3,4)(5,13)(6,14)(7,8)(11,12)(15,16), (1,3,5,8,10,12,14,15)(2,4,6,7,9,11,13,16) | |
| $|\Aut(F/K)|$: | $16$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $C_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 8: $C_4\times C_2$, $C_8:C_2$
Low degree siblings
8T7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,11)( 4,12)( 5, 6)( 7,15)( 8,16)( 9,10)(13,14)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 3, 5, 8,10,12,14,15)( 2, 4, 6, 7, 9,11,13,16)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 4,14,16,10,11, 5, 7)( 2, 3,13,15, 9,12, 6, 8)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 5,10,14)( 2, 6, 9,13)( 3, 8,12,15)( 4, 7,11,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 6,10,13)( 2, 5, 9,14)( 3,16,12, 7)( 4,15,11, 8)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 7, 5,11,10,16,14, 4)( 2, 8, 6,12, 9,15,13, 3)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 8,14, 3,10,15, 5,12)( 2, 7,13, 4, 9,16, 6,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,14,10, 5)( 2,13, 9, 6)( 3,15,12, 8)( 4,16,11, 7)$ |
Group invariants
| Order: | $16=2^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [16, 6] |
| Character table: |
2 4 3 3 3 4 3 3 3 4 4
1a 2a 8a 8b 4a 4b 8c 8d 2b 4c
2P 1a 1a 4a 4c 2b 2b 4a 4c 1a 2b
3P 1a 2a 8d 8c 4c 4b 8b 8a 2b 4a
5P 1a 2a 8a 8b 4a 4b 8c 8d 2b 4c
7P 1a 2a 8d 8c 4c 4b 8b 8a 2b 4a
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 1 -1 1 1
X.3 1 -1 1 -1 1 -1 -1 1 1 1
X.4 1 1 -1 -1 1 1 -1 -1 1 1
X.5 1 -1 A -A -1 1 A -A 1 -1
X.6 1 -1 -A A -1 1 -A A 1 -1
X.7 1 1 A A -1 -1 -A -A 1 -1
X.8 1 1 -A -A -1 -1 A A 1 -1
X.9 2 . . . B . . . -2 -B
X.10 2 . . . -B . . . -2 B
A = -E(4)
= -Sqrt(-1) = -i
B = -2*E(4)
= -2*Sqrt(-1) = -2i
|