Show commands: Magma
Group invariants
| Abstract group: | $C_8^2:C_4$ |
| |
| Order: | $256=2^{8}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $580$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,12,15,7,4,9,14,6,2,11,16,8,3,10,13,5)$, $(1,4,2,3)(5,10,7,12,6,9,8,11)(13,15,14,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 6, $C_2^2$ $8$: $D_{4}$ x 3, $C_4\times C_2$ x 3, $Q_8$ $16$: $C_2^2:C_4$ x 3, $C_4^2$, $C_4:C_4$ x 3 $32$: $C_4\wr C_2$ x 2, 32T41 $64$: 16T74, 16T90, 16T121 $128$: 32T1094 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $C_4\wr C_2$
Low degree siblings
16T580 x 3, 32T2851 x 2, 32T2852 x 2, 32T2853 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| 2C | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $(1,2)(3,4)(5,6)(7,8)$ |
| 4A1 | $4^{4}$ | $1$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| 4A-1 | $4^{4}$ | $1$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| 4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| 4C1 | $4^{2},1^{8}$ | $2$ | $4$ | $6$ | $( 5, 8, 6, 7)( 9,12,10,11)$ |
| 4C-1 | $4^{2},1^{8}$ | $2$ | $4$ | $6$ | $( 5, 7, 6, 8)( 9,11,10,12)$ |
| 4D1 | $4^{2},2^{4}$ | $2$ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,14)(15,16)$ |
| 4D-1 | $4^{2},2^{4}$ | $2$ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,14)(15,16)$ |
| 4E | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,12,10,11)(13,16,14,15)$ |
| 4F | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 1, 2)( 3, 4)( 5, 7, 6, 8)( 9,12,10,11)$ |
| 4G1 | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,14)(10,13)(11,16)(12,15)$ |
| 4G-1 | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,14)(10,13)(11,16)(12,15)$ |
| 8A1 | $8,1^{8}$ | $4$ | $8$ | $7$ | $( 5,11, 8, 9, 6,12, 7,10)$ |
| 8A-1 | $8,1^{8}$ | $4$ | $8$ | $7$ | $( 5, 9, 7,11, 6,10, 8,12)$ |
| 8B1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,16, 3,14, 2,15, 4,13)( 5, 9, 7,11, 6,10, 8,12)$ |
| 8B-1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,16, 3,14, 2,15, 4,13)( 5,10, 7,12, 6, 9, 8,11)$ |
| 8C1 | $8,2^{4}$ | $4$ | $8$ | $11$ | $( 1, 2)( 3, 4)( 5,12, 8,10, 6,11, 7, 9)(13,14)(15,16)$ |
| 8C-1 | $8,2^{4}$ | $4$ | $8$ | $11$ | $( 1, 2)( 3, 4)( 5,10, 7,12, 6, 9, 8,11)(13,14)(15,16)$ |
| 8D1 | $8,4^{2}$ | $4$ | $8$ | $13$ | $( 1, 3, 2, 4)( 5,10, 7,12, 6, 9, 8,11)(13,16,14,15)$ |
| 8D-1 | $8,4^{2}$ | $4$ | $8$ | $13$ | $( 1,16, 3,14, 2,15, 4,13)( 5, 7, 6, 8)( 9,11,10,12)$ |
| 8E1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,16, 3,14, 2,15, 4,13)( 5,12, 8,10, 6,11, 7, 9)$ |
| 8E-1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,14, 4,16, 2,13, 3,15)( 5, 9, 7,11, 6,10, 8,12)$ |
| 8F1 | $8,4^{2}$ | $4$ | $8$ | $13$ | $( 1, 3, 2, 4)( 5,11, 8, 9, 6,12, 7,10)(13,16,14,15)$ |
| 8F-1 | $8,4^{2}$ | $4$ | $8$ | $13$ | $( 1, 4, 2, 3)( 5, 9, 7,11, 6,10, 8,12)(13,15,14,16)$ |
| 8G1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,15, 4,14, 2,16, 3,13)( 5,12, 7, 9, 6,11, 8,10)$ |
| 8G-1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,13, 3,16, 2,14, 4,15)( 5,10, 8,11, 6, 9, 7,12)$ |
| 8H | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,15, 4,14, 2,16, 3,13)( 5,10, 8,11, 6, 9, 7,12)$ |
| 8I1 | $8,2^{2},1^{4}$ | $8$ | $8$ | $9$ | $( 1, 2)( 3, 4)( 5,12, 7, 9, 6,11, 8,10)$ |
| 8I-1 | $8,2^{2},1^{4}$ | $8$ | $8$ | $9$ | $( 1, 2)( 3, 4)( 5,10, 8,11, 6, 9, 7,12)$ |
| 8J1 | $8,4^{2}$ | $8$ | $8$ | $13$ | $( 1, 4, 2, 3)( 5, 9, 8,12, 6,10, 7,11)(13,16,14,15)$ |
| 8J-1 | $8,4^{2}$ | $8$ | $8$ | $13$ | $( 1, 4, 2, 3)( 5,12, 7, 9, 6,11, 8,10)(13,16,14,15)$ |
| 8K1 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1, 7, 4, 6, 2, 8, 3, 5)( 9,14,12,15,10,13,11,16)$ |
| 8K-1 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1, 8, 4, 5, 2, 7, 3, 6)( 9,14,12,15,10,13,11,16)$ |
| 16A1 | $16$ | $16$ | $16$ | $15$ | $( 1,12,15, 7, 4, 9,14, 6, 2,11,16, 8, 3,10,13, 5)$ |
| 16A-1 | $16$ | $16$ | $16$ | $15$ | $( 1, 9,14, 7, 3,12,15, 5, 2,10,13, 8, 4,11,16, 6)$ |
| 16B1 | $16$ | $16$ | $16$ | $15$ | $( 1,10,13, 8, 3,11,16, 6, 2, 9,14, 7, 4,12,15, 5)$ |
| 16B-1 | $16$ | $16$ | $16$ | $15$ | $( 1,11,16, 8, 4,10,13, 5, 2,12,15, 7, 3, 9,14, 6)$ |
Malle's constant $a(G)$: $1/4$
Character table
40 x 40 character table
Regular extensions
Data not computed