Show commands: Magma
Group invariants
| Abstract group: | $D_8:C_2$ |
| |
| Order: | $32=2^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $38$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,9)(2,10)(3,4)(5,13)(6,14)(7,8)(11,12)(15,16)$, $(1,4,6,8,10,11,13,15)(2,3,5,7,9,12,14,16)$, $(1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,16)(14,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ $16$: $D_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$, $Z_8 : Z_8^\times$ x 2
Low degree siblings
8T15 x 2, 16T35, 16T38, 16T45, 32T21Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
| 2B | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 9)( 2,10)( 3, 4)( 5,13)( 6,14)( 7, 8)(11,12)(15,16)$ |
| 2C | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,14)( 2,13)( 3,11)( 4,12)( 5,10)( 6, 9)( 7, 8)(15,16)$ |
| 2D | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,13)( 8,14)( 9,11)(10,12)$ |
| 2E | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 6)( 2, 5)( 3,12)( 4,11)( 9,14)(10,13)$ |
| 4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 5,10,14)( 2, 6, 9,13)( 3,15,12, 8)( 4,16,11, 7)$ |
| 4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,13,10, 6)( 2,14, 9, 5)( 3,16,12, 7)( 4,15,11, 8)$ |
| 4C | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,11,10, 4)( 2,12, 9, 3)( 5, 7,14,16)( 6, 8,13,15)$ |
| 8A | $8^{2}$ | $4$ | $8$ | $14$ | $( 1, 8,13, 4,10,15, 6,11)( 2, 7,14, 3, 9,16, 5,12)$ |
| 8B | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,16, 6, 3,10, 7,13,12)( 2,15, 5, 4, 9, 8,14,11)$ |
Malle's constant $a(G)$: $1/6$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 8A | 8B | ||
| Size | 1 | 1 | 2 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 4B | 4B | |
| Type | ||||||||||||
| 32.43.1a | R | |||||||||||
| 32.43.1b | R | |||||||||||
| 32.43.1c | R | |||||||||||
| 32.43.1d | R | |||||||||||
| 32.43.1e | R | |||||||||||
| 32.43.1f | R | |||||||||||
| 32.43.1g | R | |||||||||||
| 32.43.1h | R | |||||||||||
| 32.43.2a | R | |||||||||||
| 32.43.2b | R | |||||||||||
| 32.43.4a | R |
Regular extensions
Data not computed