Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $38$ | |
| Group : | $C_8:C_2^2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,9)(2,10)(3,4)(5,13)(6,14)(7,8)(11,12)(15,16), (1,4,6,8,10,11,13,15)(2,3,5,7,9,12,14,16), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,16)(14,15) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ 16: $D_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$, $Z_8 : Z_8^\times$ x 2
Low degree siblings
8T15 x 2, 16T35, 16T38, 16T45, 32T21Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 7)( 4, 8)( 5,14)( 6,13)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,11)( 4,12)( 5, 6)( 7,15)( 8,16)( 9,10)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,15)( 4,16)( 5,13)( 6,14)( 7,11)( 8,12)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,13)( 8,14)( 9,11)(10,12)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 3,13,16,10,12, 6, 7)( 2, 4,14,15, 9,11, 5, 8)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 4, 6, 8,10,11,13,15)( 2, 3, 5, 7, 9,12,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 4,10,11)( 2, 3, 9,12)( 5,16,14, 7)( 6,15,13, 8)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5,10,14)( 2, 6, 9,13)( 3,15,12, 8)( 4,16,11, 7)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 6,10,13)( 2, 5, 9,14)( 3, 7,12,16)( 4, 8,11,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 43] |
| Character table: |
2 5 3 4 3 3 3 3 3 4 4 5
1a 2a 2b 2c 2d 8a 8b 4a 4b 4c 2e
2P 1a 1a 1a 1a 1a 4c 4c 2e 2e 2e 1a
3P 1a 2a 2b 2c 2d 8a 8b 4a 4b 4c 2e
5P 1a 2a 2b 2c 2d 8a 8b 4a 4b 4c 2e
7P 1a 2a 2b 2c 2d 8a 8b 4a 4b 4c 2e
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 -1 1 -1 1 1
X.3 1 -1 -1 1 1 -1 1 -1 -1 1 1
X.4 1 -1 1 -1 -1 1 1 -1 1 1 1
X.5 1 -1 1 -1 1 -1 -1 1 1 1 1
X.6 1 1 -1 -1 -1 -1 1 1 -1 1 1
X.7 1 1 -1 -1 1 1 -1 -1 -1 1 1
X.8 1 1 1 1 -1 -1 -1 -1 1 1 1
X.9 2 . 2 . . . . . -2 -2 2
X.10 2 . -2 . . . . . 2 -2 2
X.11 4 . . . . . . . . . -4
|