Show commands: Magma
Group invariants
Abstract group: | $C_4^2:D_4$ |
| |
Order: | $128=2^{7}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $4$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $336$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,8)(2,7)(3,5)(4,6)(9,13,10,14)(11,16,12,15)$, $(1,6,2,5)(3,8,4,7)(9,15,10,16)(11,13,12,14)$, $(1,16)(2,15)(3,13)(4,14)(5,6)(11,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 3 $32$: $C_2^2 \wr C_2$ $64$: $(((C_4 \times C_2): C_2):C_2):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$
Low degree siblings
16T340, 16T341 x 2, 16T352, 16T359, 16T366, 16T402, 32T767, 32T768, 32T769, 32T777, 32T778, 32T779, 32T780 x 2, 32T781, 32T807, 32T808, 32T820, 32T821, 32T894, 32T1569, 32T1694Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
2C | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,16)( 2,15)( 3,14)( 4,13)( 5, 9)( 6,10)( 7,11)( 8,12)$ |
2D | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 1, 2)( 3, 4)( 9,10)(11,12)$ |
2E | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5,11)( 6,12)( 7, 9)( 8,10)(13,16)(14,15)$ |
2F | $2^{6},1^{4}$ | $8$ | $2$ | $6$ | $( 1,15)( 2,16)( 3,14)( 4,13)( 7, 8)( 9,10)$ |
2G | $2^{8}$ | $8$ | $2$ | $8$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,16)( 6,15)( 7,14)( 8,13)$ |
4A | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,16, 2,15)( 3,14, 4,13)( 5,10, 6, 9)( 7,12, 8,11)$ |
4B | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 1, 2)( 5, 9, 6,10)( 7,12, 8,11)(15,16)$ |
4C | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1,13, 2,14)( 3,15, 4,16)( 5, 7)( 6, 8)( 9,12)(10,11)$ |
4D | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
4E | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5,12, 6,11)( 7, 9, 8,10)$ |
4F | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 9, 2,10)( 3,11, 4,12)( 5,16, 6,15)( 7,14, 8,13)$ |
4G | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,11,16, 7)( 2,12,15, 8)( 3, 9,14, 5)( 4,10,13, 6)$ |
4H | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1,12, 2,11)( 3, 9, 4,10)( 5,14)( 6,13)( 7,15)( 8,16)$ |
8A | $8^{2}$ | $16$ | $8$ | $14$ | $( 1,10,16, 6, 2, 9,15, 5)( 3,11,14, 7, 4,12,13, 8)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | ||
Size | 1 | 1 | 2 | 4 | 4 | 8 | 8 | 8 | 4 | 8 | 8 | 8 | 8 | 8 | 16 | 16 | 16 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2B | 2B | 2A | 2B | 2A | 2C | 2D | 4A | |
Type | ||||||||||||||||||
128.932.1a | R | |||||||||||||||||
128.932.1b | R | |||||||||||||||||
128.932.1c | R | |||||||||||||||||
128.932.1d | R | |||||||||||||||||
128.932.1e | R | |||||||||||||||||
128.932.1f | R | |||||||||||||||||
128.932.1g | R | |||||||||||||||||
128.932.1h | R | |||||||||||||||||
128.932.2a | R | |||||||||||||||||
128.932.2b | R | |||||||||||||||||
128.932.2c | R | |||||||||||||||||
128.932.2d | R | |||||||||||||||||
128.932.2e | R | |||||||||||||||||
128.932.2f | R | |||||||||||||||||
128.932.4a | R | |||||||||||||||||
128.932.4b | R | |||||||||||||||||
128.932.8a | R |
Regular extensions
Data not computed