Show commands: Magma
Group invariants
| Abstract group: | $C_4^2.D_4$ |
| |
| Order: | $128=2^{7}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $321$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,2)(3,4)(5,8,6,7)(9,12,10,11)(13,14)(15,16)$, $(1,6,3,7,2,5,4,8)(9,15,12,13,10,16,11,14)$, $(1,16,3,14,2,15,4,13)(5,10,8,11,6,9,7,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 2, $Q_8:C_2$ x 4, $C_4\times C_2^2$ $32$: $C_4^2:C_2$, $C_4 \times D_4$ x 2, 16T27, 16T30, 16T34, 16T37 $64$: 32T200 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 8: $Q_8:C_2$
Low degree siblings
16T321, 32T735, 32T736 x 2, 32T737, 32T1913, 32T2000Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $(1,2)(3,4)(5,6)(7,8)$ |
| 2C | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| 2D | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| 2E | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,16)(10,15)(11,13)(12,14)$ |
| 4A1 | $4^{4}$ | $1$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| 4A-1 | $4^{4}$ | $1$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| 4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,15,14,16)$ |
| 4C | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)$ |
| 4D | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
| 4E1 | $4^{2},2^{4}$ | $2$ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,14)(15,16)$ |
| 4E-1 | $4^{2},2^{4}$ | $2$ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,14)(15,16)$ |
| 4F1 | $4^{2},1^{8}$ | $2$ | $4$ | $6$ | $( 5, 7, 6, 8)( 9,11,10,12)$ |
| 4F-1 | $4^{2},1^{8}$ | $2$ | $4$ | $6$ | $( 5, 8, 6, 7)( 9,12,10,11)$ |
| 4G1 | $4^{2},2^{2},1^{4}$ | $4$ | $4$ | $8$ | $( 5, 7, 6, 8)( 9,12,10,11)(13,14)(15,16)$ |
| 4G-1 | $4^{2},2^{2},1^{4}$ | $4$ | $4$ | $8$ | $( 5, 8, 6, 7)( 9,11,10,12)(13,14)(15,16)$ |
| 4H | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 7, 2, 8)( 3, 5, 4, 6)( 9,15,10,16)(11,14,12,13)$ |
| 4I1 | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 5,14, 6,13)( 7,16, 8,15)$ |
| 4I-1 | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1,11, 2,12)( 3, 9, 4,10)( 5,13)( 6,14)( 7,15)( 8,16)$ |
| 8A1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,13, 4,15, 2,14, 3,16)( 5,10, 8,11, 6, 9, 7,12)$ |
| 8A-1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,15, 3,13, 2,16, 4,14)( 5,11, 7,10, 6,12, 8, 9)$ |
| 8B1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,13, 4,15, 2,14, 3,16)( 5, 9, 8,12, 6,10, 7,11)$ |
| 8B-1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,15, 3,13, 2,16, 4,14)( 5,12, 7, 9, 6,11, 8,10)$ |
| 8C1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,14, 4,16, 2,13, 3,15)( 5,11, 7,10, 6,12, 8, 9)$ |
| 8C-1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,16, 3,14, 2,15, 4,13)( 5,10, 8,11, 6, 9, 7,12)$ |
| 8D1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,16, 3,14, 2,15, 4,13)( 5, 9, 8,12, 6,10, 7,11)$ |
| 8D-1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,14, 4,16, 2,13, 3,15)( 5,12, 7, 9, 6,11, 8,10)$ |
| 8E | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,12, 3,10, 2,11, 4, 9)( 5,16, 7,13, 6,15, 8,14)$ |
| 8F | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,12, 4, 9, 2,11, 3,10)( 5,15, 8,13, 6,16, 7,14)$ |
| 8G1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1, 8, 4, 5, 2, 7, 3, 6)( 9,14,11,16,10,13,12,15)$ |
| 8G-1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1, 8, 3, 6, 2, 7, 4, 5)( 9,13,12,16,10,14,11,15)$ |
Malle's constant $a(G)$: $1/4$
Character table
32 x 32 character table
Regular extensions
Data not computed