Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1775$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $8$ | |
| Generators: | (1,14,2,13)(3,4)(5,9)(6,10)(7,15,8,16), (15,16), (1,3,6,7,9,11,13,15,2,4,5,8,10,12,14,16), (1,10,2,9)(7,16,8,15) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 15 4: $C_2^2$ x 35 8: $D_{4}$ x 20, $C_2^3$ x 15 16: $D_4\times C_2$ x 30, $C_2^4$ 32: $C_2^2 \wr C_2$ x 8, $C_2^3 : D_4 $ x 2, $C_2^2 \times D_4$ x 5 64: $(C_4^2 : C_2):C_2$ x 4, $(((C_4 \times C_2): C_2):C_2):C_2$ x 4, 16T87, 16T105 x 2, 16T109 x 4 128: $C_2 \wr C_2\wr C_2$ x 4, 16T245 x 2, 16T265 x 2, 32T1237 256: 16T477 x 2, 16T509 x 2, 16T511, 16T531, 16T538 512: 32T12264 x 2, 32T12969 1024: 16T1177 2048: 32T128074 4096: 16T1556 8192: 32T519843 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $(C_4^2 : C_2):C_2$
Low degree siblings
16T1775 x 15, 16T1779 x 16, 32T723864 x 8, 32T723865 x 8, 32T723866 x 8, 32T723867 x 8, 32T723868 x 8, 32T723869 x 8, 32T723870 x 8, 32T723871 x 8, 32T723872 x 8, 32T723873 x 8, 32T723874 x 8, 32T723875 x 16, 32T723876 x 8, 32T723877 x 8, 32T723878 x 8, 32T723879 x 8, 32T723880 x 8, 32T723881 x 8, 32T723882 x 8, 32T723883 x 8, 32T723884 x 8, 32T723885 x 8, 32T723886 x 8, 32T723887 x 8, 32T723888 x 8, 32T723889 x 8, 32T723890 x 8, 32T723891 x 8, 32T723892 x 8, 32T723893 x 8, 32T723894 x 8, 32T723986 x 8, 32T723987 x 8, 32T723988 x 8, 32T723989 x 8, 32T723990 x 8, 32T723991 x 8, 32T723992 x 8, 32T723993 x 8, 32T723994 x 8, 32T723995 x 8, 32T723996 x 8, 32T723997 x 8, 32T723998 x 8, 32T723999 x 8, 32T724000 x 8, 32T724001 x 8, 32T724002 x 8, 32T724003 x 8, 32T724004 x 8, 32T724005 x 8, 32T724006 x 8, 32T724007 x 8, 32T724008 x 8, 32T724009 x 8, 32T724010 x 8, 32T724011 x 8, 32T724012 x 8, 32T724013 x 8, 32T724014 x 8, 32T724015 x 8, 32T727404 x 8, 32T728417 x 8, 32T743356 x 4, 32T743433 x 4, 32T743528 x 4, 32T743568 x 4, 32T743678 x 4, 32T743789 x 4, 32T862501 x 4, 32T862596 x 4, 32T873083 x 4, 32T873832 x 4, 32T968027 x 4, 32T968141 x 4, 32T1037995 x 4, 32T1038046 x 4, 32T1061662 x 4, 32T1061665 x 4, 32T1099771 x 4, 32T1099774 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 136 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $16384=2^{14}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |