Show commands: Magma
Group invariants
| Abstract group: | $C_2^3.D_4$ |
| |
| Order: | $64=2^{6}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $165$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,3,2,4)(5,8,6,7)(9,16,10,15)(11,13,12,14)$, $(1,14,7,15)(2,13,8,16)(3,11,6,10)(4,12,5,9)$, $(1,2)(3,4)(9,11,10,12)(13,16,14,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 3 $32$: $C_2^2 \wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$
Low degree siblings
16T146, 16T165 x 2, 16T173, 16T177 x 3, 32T162 x 3, 32T175 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 2B | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,11)(10,12)(13,15)(14,16)$ |
| 2C | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,11)(10,12)(13,15)(14,16)$ |
| 2D | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $(1,2)(3,4)(5,6)(7,8)$ |
| 2E | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,14)(10,13)(11,15)(12,16)$ |
| 2F | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,13)( 2,14)( 3,12)( 4,11)( 5, 9)( 6,10)( 7,15)( 8,16)$ |
| 2G | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,12)( 2,11)( 3,14)( 4,13)( 5,16)( 6,15)( 7, 9)( 8,10)$ |
| 4A | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,13, 2,14)( 3,12, 4,11)( 5, 9, 6,10)( 7,15, 8,16)$ |
| 4B | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,16,10,15)(11,13,12,14)$ |
| 4C | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,10, 2, 9)( 3,16, 4,15)( 5,14, 6,13)( 7,11, 8,12)$ |
| 4D1 | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,14,10,13)(11,16,12,15)$ |
| 4D-1 | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,13,10,14)(11,15,12,16)$ |
| 4E | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,10, 7,12)( 2, 9, 8,11)( 3,16, 6,14)( 4,15, 5,13)$ |
| 4F | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,14, 8,16)( 2,13, 7,15)( 3,11, 5, 9)( 4,12, 6,10)$ |
| 4G | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,10)(15,16)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D1 | 4D-1 | 4E | 4F | 4G | ||
| Size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2A | 2B | 2C | 2D | |
| Type | |||||||||||||||||
| 64.139.1a | R | ||||||||||||||||
| 64.139.1b | R | ||||||||||||||||
| 64.139.1c | R | ||||||||||||||||
| 64.139.1d | R | ||||||||||||||||
| 64.139.1e | R | ||||||||||||||||
| 64.139.1f | R | ||||||||||||||||
| 64.139.1g | R | ||||||||||||||||
| 64.139.1h | R | ||||||||||||||||
| 64.139.2a | R | ||||||||||||||||
| 64.139.2b | R | ||||||||||||||||
| 64.139.2c | R | ||||||||||||||||
| 64.139.2d | R | ||||||||||||||||
| 64.139.2e | R | ||||||||||||||||
| 64.139.2f | R | ||||||||||||||||
| 64.139.4a1 | C | ||||||||||||||||
| 64.139.4a2 | C |
Regular extensions
Data not computed