Show commands: Magma
Group invariants
| Abstract group: | $Q_{16}$ |
| |
| Order: | $16=2^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $14$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $16$ |
| |
| Generators: | $(1,13,2,14)(3,12,4,11)(5,9,6,10)(7,15,8,16)$, $(1,12,2,11)(3,9,4,10)(5,8,6,7)(13,15,14,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 5, 2, 6)( 3,15, 4,16)( 7,11, 8,12)( 9,13,10,14)$ |
| 4B | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,13, 2,14)( 3,12, 4,11)( 5, 9, 6,10)( 7,15, 8,16)$ |
| 4C | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 8, 2, 7)( 3,14, 4,13)( 5,11, 6,12)( 9,15,10,16)$ |
| 8A1 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 4, 5,16, 2, 3, 6,15)( 7, 9,11,13, 8,10,12,14)$ |
| 8A3 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 3, 5,15, 2, 4, 6,16)( 7,10,11,14, 8, 9,12,13)$ |
Malle's constant $a(G)$: $1/8$
Character table
| 1A | 2A | 4A | 4B | 4C | 8A1 | 8A3 | ||
| Size | 1 | 1 | 2 | 4 | 4 | 2 | 2 | |
| 2 P | 1A | 1A | 2A | 2A | 2A | 4A | 4A | |
| Type | ||||||||
| 16.9.1a | R | |||||||
| 16.9.1b | R | |||||||
| 16.9.1c | R | |||||||
| 16.9.1d | R | |||||||
| 16.9.2a | R | |||||||
| 16.9.2b1 | S | |||||||
| 16.9.2b2 | S |
Regular extensions
Data not computed