Show commands: Magma
Group invariants
Abstract group: | $C_8.D_4$ |
| |
Order: | $64=2^{6}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $3$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $133$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,15,6,11,2,16,5,12)(3,13,8,9,4,14,7,10)$, $(1,10,5,13,2,9,6,14)(3,12,7,15,4,11,8,16)$, $(1,4,5,8,2,3,6,7)(9,11,14,16,10,12,13,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 4, $C_2^3$ $16$: $D_4\times C_2$ x 2, $Q_8:C_2$ $32$: 16T34 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 8: $Q_8:C_2$
Low degree siblings
16T133, 32T143 x 2, 32T144, 32T357Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
2C | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,16)( 2,15)( 3,10)( 4, 9)( 5,12)( 6,11)( 7,13)( 8,14)$ |
2D | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,15)(10,16)(11,13)(12,14)$ |
2E | $2^{6},1^{4}$ | $8$ | $2$ | $6$ | $( 1, 5)( 2, 6)( 7, 8)( 9,13)(10,14)(11,12)$ |
4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,13,10,14)(11,15,12,16)$ |
4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,13,10,14)(11,15,12,16)$ |
4C | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,11, 2,12)( 3,14, 4,13)( 5,16, 6,15)( 7,10, 8, 9)$ |
8A1 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 8, 6, 4, 2, 7, 5, 3)( 9,15,13,12,10,16,14,11)$ |
8A3 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 7, 6, 3, 2, 8, 5, 4)( 9,16,13,11,10,15,14,12)$ |
8B | $8^{2}$ | $4$ | $8$ | $14$ | $( 1, 3, 5, 7, 2, 4, 6, 8)( 9,12,14,15,10,11,13,16)$ |
8C1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,14, 6, 9, 2,13, 5,10)( 3,16, 8,11, 4,15, 7,12)$ |
8C-1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1, 9, 5,14, 2,10, 6,13)( 3,11, 7,16, 4,12, 8,15)$ |
8D | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,10, 5,14, 2, 9, 6,13)( 3,16, 7,11, 4,15, 8,12)$ |
8E | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,16, 5,11, 2,15, 6,12)( 3,14, 7, 9, 4,13, 8,10)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 8A1 | 8A3 | 8B | 8C1 | 8C-1 | 8D | 8E | ||
Size | 1 | 1 | 2 | 4 | 8 | 8 | 2 | 2 | 4 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 4A | 4A | 4A | 4A | 4A | 4B | 4B | |
Type | |||||||||||||||||
64.153.1a | R | ||||||||||||||||
64.153.1b | R | ||||||||||||||||
64.153.1c | R | ||||||||||||||||
64.153.1d | R | ||||||||||||||||
64.153.1e | R | ||||||||||||||||
64.153.1f | R | ||||||||||||||||
64.153.1g | R | ||||||||||||||||
64.153.1h | R | ||||||||||||||||
64.153.2a | R | ||||||||||||||||
64.153.2b | R | ||||||||||||||||
64.153.2c | R | ||||||||||||||||
64.153.2d | R | ||||||||||||||||
64.153.2e1 | C | ||||||||||||||||
64.153.2e2 | C | ||||||||||||||||
64.153.4a1 | R | ||||||||||||||||
64.153.4a2 | R |
Regular extensions
Data not computed