Show commands: Magma
Group invariants
Abstract group: | $C_8.D_4$ |
| |
Order: | $64=2^{6}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $3$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $132$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,15,5,12,2,16,6,11)(3,13,7,10,4,14,8,9)$, $(1,6)(2,5)(3,4)(9,14)(10,13)(15,16)$, $(1,4,2,3)(5,7,6,8)(9,11,10,12)(13,16,14,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 4, $C_2^3$ $16$: $D_4\times C_2$ x 2, $Q_8:C_2$ $32$: 16T34 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 8: $Q_8:C_2$
Low degree siblings
32T141, 32T142, 32T358Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $(1,2)(3,4)(5,6)(7,8)$ |
2C | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,11)( 2,12)( 3,14)( 4,13)( 5,16)( 6,15)( 7,10)( 8, 9)$ |
2D | $2^{6},1^{4}$ | $8$ | $2$ | $6$ | $( 3, 8)( 4, 7)( 5, 6)(11,15)(12,16)(13,14)$ |
4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,14,10,13)(11,16,12,15)$ |
4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,13,10,14)(11,15,12,16)$ |
4C | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,16, 2,15)( 3,10, 4, 9)( 5,12, 6,11)( 7,13, 8,14)$ |
4D | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,15,10,16)(11,14,12,13)$ |
8A1 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 7, 5, 4, 2, 8, 6, 3)( 9,15,14,11,10,16,13,12)$ |
8A-1 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 8, 5, 3, 2, 7, 6, 4)( 9,16,14,12,10,15,13,11)$ |
8B | $8^{2}$ | $4$ | $8$ | $14$ | $( 1, 4, 6, 7, 2, 3, 5, 8)( 9,12,13,16,10,11,14,15)$ |
8C1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,10, 5,13, 2, 9, 6,14)( 3,11, 7,16, 4,12, 8,15)$ |
8C-1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,13, 6,10, 2,14, 5, 9)( 3,16, 8,11, 4,15, 7,12)$ |
8D | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,15, 5,12, 2,16, 6,11)( 3,13, 7,10, 4,14, 8, 9)$ |
8E | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,14, 6,10, 2,13, 5, 9)( 3,12, 8,15, 4,11, 7,16)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 8A1 | 8A-1 | 8B | 8C1 | 8C-1 | 8D | 8E | ||
Size | 1 | 1 | 2 | 4 | 8 | 2 | 2 | 4 | 8 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | |
2 P | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 4A | 4A | 4A | 4A | 4A | 4B | 4B | |
Type | |||||||||||||||||
64.152.1a | R | ||||||||||||||||
64.152.1b | R | ||||||||||||||||
64.152.1c | R | ||||||||||||||||
64.152.1d | R | ||||||||||||||||
64.152.1e | R | ||||||||||||||||
64.152.1f | R | ||||||||||||||||
64.152.1g | R | ||||||||||||||||
64.152.1h | R | ||||||||||||||||
64.152.2a | R | ||||||||||||||||
64.152.2b | R | ||||||||||||||||
64.152.2c | R | ||||||||||||||||
64.152.2d | R | ||||||||||||||||
64.152.2e1 | C | ||||||||||||||||
64.152.2e2 | C | ||||||||||||||||
64.152.4a1 | C | ||||||||||||||||
64.152.4a2 | C |
Regular extensions
Data not computed