Show commands: Magma
Group invariants
Abstract group: | $(D_4\times C_2^3).Q_{16}$ |
| |
Order: | $1024=2^{10}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $7$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $1255$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,5,16,11,2,6,15,12)(3,7,13,10)(4,8,14,9)$, $(1,15,4,13,2,16,3,14)(5,7)(6,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $QD_{16}$, $C_2^2:C_4$, $Q_{16}$ $32$: $C_4\wr C_2$, $C_2^3 : C_4 $, 32T50 $64$: $((C_8 : C_2):C_2):C_2$, 16T154, 16T161 $128$: 32T1744 $256$: 16T684 $512$: 32T26909 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $C_2^3 : C_4 $
Low degree siblings
16T1255 x 3, 16T1258 x 4, 32T36662 x 4, 32T36663 x 4, 32T36664 x 2, 32T36665 x 4, 32T36666 x 2, 32T36678 x 4, 32T36679 x 2, 32T36680 x 4, 32T36681 x 2, 32T55451 x 2, 32T55452 x 2, 32T71146 x 2, 32T90080 x 2, 32T90323 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
2C | $2^{2},1^{12}$ | $4$ | $2$ | $2$ | $(13,14)(15,16)$ |
2D | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
2E | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2F | $2^{4},1^{8}$ | $8$ | $2$ | $4$ | $( 3, 4)( 5, 6)( 9,10)(13,14)$ |
2G | $2^{4},1^{8}$ | $8$ | $2$ | $4$ | $( 3, 4)( 7, 8)( 9,10)(13,14)$ |
2H | $2^{8}$ | $16$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)$ |
2I | $2^{6},1^{4}$ | $32$ | $2$ | $6$ | $( 3, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(15,16)$ |
4A | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 5, 7, 6, 8)( 9,11,10,12)(13,14)(15,16)$ |
4B | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,14)(15,16)$ |
4C | $4^{2},1^{8}$ | $8$ | $4$ | $6$ | $( 5, 7, 6, 8)( 9,11,10,12)$ |
4D | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 5, 7, 6, 8)( 9,12,10,11)(13,14)(15,16)$ |
4E | $4^{4}$ | $16$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
4F1 | $4^{2},2^{4}$ | $32$ | $4$ | $10$ | $( 1,16)( 2,15)( 3,14, 4,13)( 5,11)( 6,12)( 7, 9, 8,10)$ |
4F-1 | $4^{2},2^{4}$ | $32$ | $4$ | $10$ | $( 1,16)( 2,15)( 3,13, 4,14)( 5,11)( 6,12)( 7,10, 8, 9)$ |
4G | $4^{2},2^{4}$ | $64$ | $4$ | $10$ | $( 1,15)( 2,16)( 3,14, 4,13)( 5,10, 6, 9)( 7,12)( 8,11)$ |
4H | $4^{2},2^{4}$ | $64$ | $4$ | $10$ | $( 1,10)( 2, 9)( 3,11, 4,12)( 5,16, 6,15)( 7,13)( 8,14)$ |
4I | $4^{2},2^{4}$ | $64$ | $4$ | $10$ | $( 1, 8, 2, 7)( 3, 6)( 4, 5)( 9,14,10,13)(11,15)(12,16)$ |
4J1 | $4^{4}$ | $64$ | $4$ | $12$ | $( 1, 5, 4, 7)( 2, 6, 3, 8)( 9,14,11,15)(10,13,12,16)$ |
4J-1 | $4^{4}$ | $64$ | $4$ | $12$ | $( 1, 7, 4, 5)( 2, 8, 3, 6)( 9,15,11,14)(10,16,12,13)$ |
8A1 | $8,2^{2},1^{4}$ | $32$ | $8$ | $9$ | $( 5, 9, 7,11, 6,10, 8,12)(13,15)(14,16)$ |
8A-1 | $8,2^{2},1^{4}$ | $32$ | $8$ | $9$ | $( 5,11, 7,10, 6,12, 8, 9)(13,15)(14,16)$ |
8B1 | $8,4,2,1^{2}$ | $32$ | $8$ | $11$ | $( 3, 4)( 5, 9, 7,12, 6,10, 8,11)(13,15,14,16)$ |
8B-1 | $8,4,2,1^{2}$ | $32$ | $8$ | $11$ | $( 3, 4)( 5,11, 8,10, 6,12, 7, 9)(13,16,14,15)$ |
8C1 | $8,4,2,1^{2}$ | $32$ | $8$ | $11$ | $( 3, 4)( 5, 9, 7,12, 6,10, 8,11)(13,16,14,15)$ |
8C-1 | $8,4,2,1^{2}$ | $32$ | $8$ | $11$ | $( 3, 4)( 5,11, 8,10, 6,12, 7, 9)(13,15,14,16)$ |
8D1 | $8,2^{4}$ | $32$ | $8$ | $11$ | $( 1, 2)( 3, 4)( 5, 9, 7,11, 6,10, 8,12)(13,15)(14,16)$ |
8D-1 | $8,2^{4}$ | $32$ | $8$ | $11$ | $( 1, 2)( 3, 4)( 5,11, 7,10, 6,12, 8, 9)(13,15)(14,16)$ |
8E1 | $8,4^{2}$ | $64$ | $8$ | $13$ | $( 1,11,16, 5)( 2,12,15, 6)( 3, 9,14, 8, 4,10,13, 7)$ |
8E-1 | $8,4^{2}$ | $64$ | $8$ | $13$ | $( 1, 5,16,11)( 2, 6,15,12)( 3, 7,13,10, 4, 8,14, 9)$ |
8E3 | $8,4^{2}$ | $64$ | $8$ | $13$ | $( 1, 5,16,11)( 2, 6,15,12)( 3, 8,13, 9, 4, 7,14,10)$ |
8E-3 | $8,4^{2}$ | $64$ | $8$ | $13$ | $( 1,11,16, 5)( 2,12,15, 6)( 3,10,14, 7, 4, 9,13, 8)$ |
Malle's constant $a(G)$: $1/2$
Character table
34 x 34 character table
Regular extensions
Data not computed