Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $4$ | |
| Group : | $S_3 \times C_5$ | |
| CHM label : | $5[x]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11)(2,7)(4,14)(5,10)(8,13), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) | |
| $|\Aut(F/K)|$: | $5$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 5: $C_5$ 6: $S_3$ 10: $C_{10}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 5: $C_5$
Low degree siblings
30T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2,12)( 3, 8)( 5,15)( 6,11)( 9,14)$ |
| $ 15 $ | $2$ | $15$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15)$ |
| $ 10, 5 $ | $3$ | $10$ | $( 1, 2,13,14,10,11, 7, 8, 4, 5)( 3, 9,15, 6,12)$ |
| $ 15 $ | $2$ | $15$ | $( 1, 3, 5, 7, 9,11,13,15, 2, 4, 6, 8,10,12,14)$ |
| $ 10, 5 $ | $3$ | $10$ | $( 1, 3,10,12, 4, 6,13,15, 7, 9)( 2,14,11, 8, 5)$ |
| $ 5, 5, 5 $ | $1$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 10, 5 $ | $3$ | $10$ | $( 1, 4, 7,10,13)( 2,15, 8, 6,14,12, 5, 3,11, 9)$ |
| $ 10, 5 $ | $3$ | $10$ | $( 1, 5, 4, 8, 7,11,10,14,13, 2)( 3,12, 6,15, 9)$ |
| $ 15 $ | $2$ | $15$ | $( 1, 5, 9,13, 2, 6,10,14, 3, 7,11,15, 4, 8,12)$ |
| $ 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
| $ 5, 5, 5 $ | $1$ | $5$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 15 $ | $2$ | $15$ | $( 1, 9, 2,10, 3,11, 4,12, 5,13, 6,14, 7,15, 8)$ |
| $ 5, 5, 5 $ | $1$ | $5$ | $( 1,10, 4,13, 7)( 2,11, 5,14, 8)( 3,12, 6,15, 9)$ |
| $ 5, 5, 5 $ | $1$ | $5$ | $( 1,13,10, 7, 4)( 2,14,11, 8, 5)( 3,15,12, 9, 6)$ |
Group invariants
| Order: | $30=2 \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [30, 1] |
| Character table: |
2 1 1 . 1 . 1 1 1 1 . . 1 . 1 1
3 1 . 1 . 1 . 1 . . 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1a 2a 15a 10a 15b 10b 5a 10c 10d 15c 3a 5b 15d 5c 5d
2P 1a 1a 15b 5d 15c 5c 5b 5b 5a 15d 3a 5d 15a 5a 5c
3P 1a 2a 5a 10c 5b 10a 5c 10d 10b 5d 1a 5a 5c 5d 5b
5P 1a 2a 3a 2a 3a 2a 1a 2a 2a 3a 3a 1a 3a 1a 1a
7P 1a 2a 15b 10b 15c 10d 5b 10a 10c 15d 3a 5d 15a 5a 5c
11P 1a 2a 15a 10a 15b 10b 5a 10c 10d 15c 3a 5b 15d 5c 5d
13P 1a 2a 15d 10c 15a 10a 5c 10d 10b 15b 3a 5a 15c 5d 5b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 -1 1 1 1 1 1 1
X.3 1 -1 A -A B -B /B -/B -/A /A 1 A /B /A B
X.4 1 -1 B -B /A -/A A -A -/B /B 1 B A /B /A
X.5 1 -1 /B -/B A -A /A -/A -B B 1 /B /A B A
X.6 1 -1 /A -/A /B -/B B -B -A A 1 /A B A /B
X.7 1 1 A A B B /B /B /A /A 1 A /B /A B
X.8 1 1 B B /A /A A A /B /B 1 B A /B /A
X.9 1 1 /B /B A A /A /A B B 1 /B /A B A
X.10 1 1 /A /A /B /B B B A A 1 /A B A /B
X.11 2 . -1 . -1 . 2 . . -1 -1 2 -1 2 2
X.12 2 . -/B . -A . C . . -B -1 /D -/A D /C
X.13 2 . -/A . -/B . D . . -A -1 C -B /C /D
X.14 2 . -A . -B . /D . . -/A -1 /C -/B C D
X.15 2 . -B . -/A . /C . . -/B -1 D -A /D C
A = E(5)^4
B = E(5)^3
C = 2*E(5)
D = 2*E(5)^3
|