Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $12$ | |
| Group : | $(C_5^2 : C_3):C_2$ | |
| CHM label : | $[5^{2}:2]3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4)(2,8)(3,12)(6,9)(7,13)(11,14), (1,13,10,7,4)(2,5,8,11,14), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 5: None
Low degree siblings
15T12, 25T15, 30T35 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $25$ | $2$ | $( 3, 6)( 4,13)( 5,14)( 7,10)( 8,11)( 9,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 2, 5, 8,11,14)( 3,15,12, 9, 6)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 2, 8,14, 5,11)( 3,12, 6,15, 9)$ |
| $ 3, 3, 3, 3, 3 $ | $25$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)$ |
| $ 6, 6, 3 $ | $25$ | $6$ | $( 1, 2, 3, 4,14, 6)( 5,15, 7,11, 9,13)( 8,12,10)$ |
| $ 3, 3, 3, 3, 3 $ | $25$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)$ |
| $ 6, 6, 3 $ | $25$ | $6$ | $( 1, 3, 5,13, 6, 2)( 4,15, 8,10, 9,14)( 7,12,11)$ |
| $ 5, 5, 5 $ | $6$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3,12, 6,15, 9)$ |
| $ 5, 5, 5 $ | $6$ | $5$ | $( 1, 4, 7,10,13)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
Group invariants
| Order: | $150=2 \cdot 3 \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [150, 6] |
| Character table: |
2 1 1 . . 1 1 1 1 . .
3 1 1 . . 1 1 1 1 . .
5 2 . 2 2 . . . . 2 2
1a 2a 5a 5b 3a 6a 3b 6b 5c 5d
2P 1a 1a 5b 5a 3b 3b 3a 3a 5d 5c
3P 1a 2a 5b 5a 1a 2a 1a 2a 5d 5c
5P 1a 2a 1a 1a 3b 6b 3a 6a 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 1 -1 1 -1 1 1
X.3 1 -1 1 1 C -C /C -/C 1 1
X.4 1 -1 1 1 /C -/C C -C 1 1
X.5 1 1 1 1 C C /C /C 1 1
X.6 1 1 1 1 /C /C C C 1 1
X.7 6 . A *A . . . . B *B
X.8 6 . *A A . . . . *B B
X.9 6 . B *B . . . . *A A
X.10 6 . *B B . . . . A *A
A = -2*E(5)-2*E(5)^4
= 1-Sqrt(5) = 1-r5
B = E(5)+2*E(5)^2+2*E(5)^3+E(5)^4
= (-3-Sqrt(5))/2 = -2-b5
C = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|