Group action invariants
| Degree $n$ : | $13$ | |
| Transitive number $t$ : | $7$ | |
| Group : | $\PSL(3,3)$ | |
| CHM label : | $L(13)=PSL(3,3)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13), (2,12)(4,11)(5,6)(7,10) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
13T7, 26T39 x 2, 39T43 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $117$ | $2$ | $( 2,10)( 3,12)( 7,13)( 9,11)$ |
| $ 4, 4, 2, 2, 1 $ | $702$ | $4$ | $( 1, 8)( 2,11,10, 9)( 3,13,12, 7)( 5, 6)$ |
| $ 8, 4, 1 $ | $702$ | $8$ | $( 1, 5, 8, 6)( 2, 7,11, 3,10,13, 9,12)$ |
| $ 8, 4, 1 $ | $702$ | $8$ | $( 1, 6, 8, 5)( 2,12, 9,13,10, 3,11, 7)$ |
| $ 3, 3, 3, 1, 1, 1, 1 $ | $104$ | $3$ | $( 1, 2, 4)( 3, 8, 7)( 5, 9,12)$ |
| $ 3, 3, 3, 3, 1 $ | $624$ | $3$ | $( 1, 5, 3)( 2, 9, 8)( 4,12, 7)( 6,11,13)$ |
| $ 6, 3, 2, 1, 1 $ | $936$ | $6$ | $( 1,12, 4, 9, 2, 5)( 3, 8, 7)( 6,11)$ |
| $ 13 $ | $432$ | $13$ | $( 1, 5,13, 9,12, 8, 4, 3,10, 2,11, 6, 7)$ |
| $ 13 $ | $432$ | $13$ | $( 1,10, 9, 6, 4, 5, 2,12, 7, 3,13,11, 8)$ |
| $ 13 $ | $432$ | $13$ | $( 1, 7, 6,11, 2,10, 3, 4, 8,12, 9,13, 5)$ |
| $ 13 $ | $432$ | $13$ | $( 1, 8,11,13, 3, 7,12, 2, 5, 4, 6, 9,10)$ |
Group invariants
| Order: | $5616=2^{4} \cdot 3^{3} \cdot 13$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 4 4 3 3 3 1 1 . . . . .
3 3 1 . . . 3 1 . . . . 2
13 1 . . . . . . 1 1 1 1 .
1a 2a 4a 8a 8b 3a 6a 13a 13b 13c 13d 3b
2P 1a 1a 2a 4a 4a 3a 3a 13d 13a 13b 13c 3b
3P 1a 2a 4a 8a 8b 1a 2a 13a 13b 13c 13d 1a
5P 1a 2a 4a 8b 8a 3a 6a 13d 13a 13b 13c 3b
7P 1a 2a 4a 8b 8a 3a 6a 13b 13c 13d 13a 3b
11P 1a 2a 4a 8a 8b 3a 6a 13b 13c 13d 13a 3b
13P 1a 2a 4a 8b 8a 3a 6a 1a 1a 1a 1a 3b
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 12 4 . . . 3 1 -1 -1 -1 -1 .
X.3 13 -3 1 -1 -1 4 . . . . . 1
X.4 16 . . . . -2 . B /C /B C 1
X.5 16 . . . . -2 . /B C B /C 1
X.6 16 . . . . -2 . C B /C /B 1
X.7 16 . . . . -2 . /C /B C B 1
X.8 26 2 2 . . -1 -1 . . . . -1
X.9 26 -2 . A -A -1 1 . . . . -1
X.10 26 -2 . -A A -1 1 . . . . -1
X.11 27 3 -1 -1 -1 . . 1 1 1 1 .
X.12 39 -1 -1 1 1 3 -1 . . . . .
A = -E(8)-E(8)^3
= -Sqrt(-2) = -i2
B = E(13)^2+E(13)^5+E(13)^6
C = E(13)^4+E(13)^10+E(13)^12
|