Group action invariants
Degree $n$: | $13$ | |
Transitive number $t$: | $7$ | |
Group: | $\PSL(3,3)$ | |
CHM label: | $L(13)=PSL(3,3)$ | |
Parity: | $1$ | |
Primitive: | yes | |
Nilpotency class: | $-1$ (not nilpotent) | |
$\card{\Aut(F/K)}$: | $1$ | |
Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13), (2,12)(4,11)(5,6)(7,10) |
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
13T7, 26T39 x 2, 39T43 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $117$ | $2$ | $( 3, 8)( 5,13)( 6, 9)(11,12)$ |
$ 3, 3, 3, 1, 1, 1, 1 $ | $104$ | $3$ | $( 1, 2, 4)( 5,12, 9)( 6,13,11)$ |
$ 6, 3, 2, 1, 1 $ | $936$ | $6$ | $( 1, 4, 2)( 3, 8)( 5, 6,12,13, 9,11)$ |
$ 13 $ | $432$ | $13$ | $( 1,10, 5, 7,11, 6, 8, 3, 2, 9, 4,12,13)$ |
$ 13 $ | $432$ | $13$ | $( 1, 2, 7,12, 8,10, 9,11,13, 3, 5, 4, 6)$ |
$ 13 $ | $432$ | $13$ | $( 1,13,12, 4, 9, 2, 3, 8, 6,11, 7, 5,10)$ |
$ 13 $ | $432$ | $13$ | $( 1, 6, 4, 5, 3,13,11, 9,10, 8,12, 7, 2)$ |
$ 4, 4, 2, 2, 1 $ | $702$ | $4$ | $( 1, 5)( 2,12, 3, 7)( 4,10, 9,13)( 6, 8)$ |
$ 8, 4, 1 $ | $702$ | $8$ | $( 1, 6, 5, 8)( 2, 4,12,10, 3, 9, 7,13)$ |
$ 8, 4, 1 $ | $702$ | $8$ | $( 1, 8, 5, 6)( 2,13, 7, 9, 3,10,12, 4)$ |
$ 3, 3, 3, 3, 1 $ | $624$ | $3$ | $( 1,11, 5)( 2, 6,12)( 3, 8, 7)( 4,13, 9)$ |
Group invariants
Order: | $5616=2^{4} \cdot 3^{3} \cdot 13$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | no | |
Label: | not available |
Character table: |
2 4 . . . . 4 3 3 3 1 1 . 3 3 . . . . 1 . . . 3 1 2 13 1 1 1 1 1 . . . . . . . 1a 13a 13b 13c 13d 2a 4a 8a 8b 3a 6a 3b 2P 1a 13d 13a 13b 13c 1a 2a 4a 4a 3a 3a 3b 3P 1a 13a 13b 13c 13d 2a 4a 8a 8b 1a 2a 1a 5P 1a 13d 13a 13b 13c 2a 4a 8b 8a 3a 6a 3b 7P 1a 13b 13c 13d 13a 2a 4a 8b 8a 3a 6a 3b 11P 1a 13b 13c 13d 13a 2a 4a 8a 8b 3a 6a 3b 13P 1a 1a 1a 1a 1a 2a 4a 8b 8a 3a 6a 3b X.1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 12 -1 -1 -1 -1 4 . . . 3 1 . X.3 13 . . . . -3 1 -1 -1 4 . 1 X.4 16 A /B /A B . . . . -2 . 1 X.5 16 /A B A /B . . . . -2 . 1 X.6 16 B A /B /A . . . . -2 . 1 X.7 16 /B /A B A . . . . -2 . 1 X.8 26 . . . . 2 2 . . -1 -1 -1 X.9 26 . . . . -2 . C -C -1 1 -1 X.10 26 . . . . -2 . -C C -1 1 -1 X.11 27 1 1 1 1 3 -1 -1 -1 . . . X.12 39 . . . . -1 -1 1 1 3 -1 . A = E(13)^2+E(13)^5+E(13)^6 B = E(13)^4+E(13)^10+E(13)^12 C = -E(8)-E(8)^3 = -Sqrt(-2) = -i2 |