Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $8$ | |
| Group : | $S_4$ | |
| CHM label : | $S_{4}(12d)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(3,5)(4,6)(7,9)(8,10), (1,3,6,12)(2,4,7,10)(5,8,11,9) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: $S_4$
Degree 6: $S_4$
Low degree siblings
4T5, 6T7, 6T8, 8T14, 12T9, 24T10Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $6$ | $2$ | $( 2,11)( 3, 4)( 5,10)( 6, 8)( 7,12)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 2,11)( 3, 6,10)( 4, 5, 8)( 7,12, 9)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 3, 6,12)( 2, 4, 7,10)( 5, 8,11, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 6)( 2, 7)( 3,12)( 4,10)( 5,11)( 8, 9)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 12] |
| Character table: |
2 3 2 . 2 3
3 1 . 1 . .
1a 2a 3a 4a 2b
2P 1a 1a 3a 2b 1a
3P 1a 2a 1a 4a 2b
X.1 1 1 1 1 1
X.2 1 -1 1 -1 1
X.3 2 . -1 . 2
X.4 3 -1 . 1 -1
X.5 3 1 . -1 -1
|