Show commands: Magma
Group invariants
| Abstract group: | $C_3:S_3^2$ |
| |
| Order: | $108=2^{2} \cdot 3^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $12$ |
| |
| Transitive number $t$: | $71$ |
| |
| CHM label: | $[3^{3}]E(4)$ | ||
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $3$ |
| |
| Generators: | $(1,10)(2,5)(3,12)(4,7)(6,9)(8,11)$, $(2,6,10)(3,7,11)(4,8,12)$, $(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 3 $12$: $D_{6}$ x 3 $36$: $S_3^2$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: None
Low degree siblings
18T53 x 3, 27T35, 36T88 x 3, 36T93Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{6}$ | $9$ | $2$ | $6$ | $( 1,10)( 2, 5)( 3, 8)( 4,11)( 6, 9)( 7,12)$ |
| 2B | $2^{6}$ | $9$ | $2$ | $6$ | $( 1, 8)( 2, 7)( 3,10)( 4, 9)( 5,12)( 6,11)$ |
| 2C | $2^{6}$ | $9$ | $2$ | $6$ | $( 1, 3)( 2, 8)( 4,10)( 5, 7)( 6,12)( 9,11)$ |
| 3A | $3^{4}$ | $2$ | $3$ | $8$ | $( 1, 5, 9)( 2, 6,10)( 3,11, 7)( 4,12, 8)$ |
| 3B | $3^{4}$ | $2$ | $3$ | $8$ | $( 1, 5, 9)( 2,10, 6)( 3,11, 7)( 4, 8,12)$ |
| 3C | $3^{4}$ | $2$ | $3$ | $8$ | $( 1, 9, 5)( 2, 6,10)( 3,11, 7)( 4, 8,12)$ |
| 3D | $3^{2},1^{6}$ | $4$ | $3$ | $4$ | $( 2, 6,10)( 4,12, 8)$ |
| 3E | $3^{2},1^{6}$ | $4$ | $3$ | $4$ | $( 3,11, 7)( 4, 8,12)$ |
| 3F | $3^{2},1^{6}$ | $4$ | $3$ | $4$ | $( 2, 6,10)( 3,11, 7)$ |
| 3G1 | $3^{3},1^{3}$ | $4$ | $3$ | $6$ | $( 1, 5, 9)( 3, 7,11)( 4, 8,12)$ |
| 3G-1 | $3^{3},1^{3}$ | $4$ | $3$ | $6$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)$ |
| 6A | $6^{2}$ | $18$ | $6$ | $10$ | $( 1, 6, 5,10, 9, 2)( 3,12,11, 8, 7, 4)$ |
| 6B | $6^{2}$ | $18$ | $6$ | $10$ | $( 1, 4, 5, 8, 9,12)( 2,11,10, 7, 6, 3)$ |
| 6C | $6^{2}$ | $18$ | $6$ | $10$ | $( 1, 7, 9, 3, 5,11)( 2, 4, 6, 8,10,12)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 3G1 | 3G-1 | 6A | 6B | 6C | ||
| Size | 1 | 9 | 9 | 9 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 18 | 18 | 18 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 3E | 3F | 3G-1 | 3G1 | 3A | 3B | 3C | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2B | 2C | |
| Type | ||||||||||||||||
| 108.40.1a | R | |||||||||||||||
| 108.40.1b | R | |||||||||||||||
| 108.40.1c | R | |||||||||||||||
| 108.40.1d | R | |||||||||||||||
| 108.40.2a | R | |||||||||||||||
| 108.40.2b | R | |||||||||||||||
| 108.40.2c | R | |||||||||||||||
| 108.40.2d | R | |||||||||||||||
| 108.40.2e | R | |||||||||||||||
| 108.40.2f | R | |||||||||||||||
| 108.40.4a | R | |||||||||||||||
| 108.40.4b | R | |||||||||||||||
| 108.40.4c | R | |||||||||||||||
| 108.40.4d1 | C | |||||||||||||||
| 108.40.4d2 | C |
Regular extensions
Data not computed