Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $44$ | |
| Group : | $C_3:S_4$ | |
| CHM label : | $1/2[3:2]S(4)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11)(2,10)(3,9)(4,8)(5,7), (1,7,10)(2,5,11)(3,6,9), (2,8,11)(3,6,12)(4,7,10), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ x 4 18: $C_3^2:C_2$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: $S_4$
Degree 6: None
Low degree siblings
12T44 x 2, 18T37, 18T40, 24T79 x 3, 36T23, 36T56Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $18$ | $2$ | $( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $8$ | $3$ | $( 2, 8,11)( 3, 6,12)( 4, 7,10)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 2, 3)( 4, 8,12)( 5, 6, 7)( 9,10,11)$ |
| $ 4, 4, 4 $ | $18$ | $4$ | $( 1, 2, 4,11)( 3, 9, 6,12)( 5,10, 8, 7)$ |
| $ 6, 6 $ | $6$ | $6$ | $( 1, 2, 9,10, 5, 6)( 3, 4,11,12, 7, 8)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 2,12)( 3, 7,11)( 4, 5, 6)( 8, 9,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 43] |
| Character table: |
2 3 2 . . 2 2 . 3 2
3 2 . 2 2 . 1 2 1 2
1a 2a 3a 3b 4a 6a 3c 2b 3d
2P 1a 1a 3a 3b 2b 3d 3c 1a 3d
3P 1a 2a 1a 1a 4a 2b 1a 2b 1a
5P 1a 2a 3a 3b 4a 6a 3c 2b 3d
X.1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 1 1 1 1
X.3 2 . -1 -1 . 2 -1 2 2
X.4 2 . 2 -1 . -1 -1 2 -1
X.5 2 . -1 -1 . -1 2 2 -1
X.6 2 . -1 2 . -1 -1 2 -1
X.7 3 -1 . . 1 -1 . -1 3
X.8 3 1 . . -1 -1 . -1 3
X.9 6 . . . . 1 . -2 -3
|