Show commands: Magma
Group invariants
| Abstract group: | $S_3\times A_4$ |
| |
| Order: | $72=2^{3} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $12$ |
| |
| Transitive number $t$: | $43$ |
| |
| CHM label: | $A(4)[x]S(3)$ | ||
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,7,10)(2,5,11)(3,6,9)$, $(2,8,11)(3,6,12)(4,7,10)$, $(1,5)(2,10)(4,8)(7,11)$, $(1,5,9)(2,6,10)(3,7,11)(4,8,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $12$: $A_4$ $18$: $S_3\times C_3$ $24$: $A_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: $A_4$
Degree 6: None
Low degree siblings
18T31, 18T32, 24T78, 24T83, 36T21, 36T50, 36T51Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{6}$ | $3$ | $2$ | $6$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| 2B | $2^{4},1^{4}$ | $3$ | $2$ | $4$ | $( 1, 5)( 2,10)( 4, 8)( 7,11)$ |
| 2C | $2^{6}$ | $9$ | $2$ | $6$ | $( 1,10)( 2, 9)( 3, 8)( 4, 7)( 5, 6)(11,12)$ |
| 3A | $3^{4}$ | $2$ | $3$ | $8$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| 3B1 | $3^{3},1^{3}$ | $4$ | $3$ | $6$ | $( 1, 7, 4)( 3,12, 9)( 5,11, 8)$ |
| 3B-1 | $3^{3},1^{3}$ | $4$ | $3$ | $6$ | $( 1, 4, 7)( 3, 9,12)( 5, 8,11)$ |
| 3C1 | $3^{4}$ | $8$ | $3$ | $8$ | $( 1, 5, 9)( 2, 3, 4)( 6, 7, 8)(10,11,12)$ |
| 3C-1 | $3^{4}$ | $8$ | $3$ | $8$ | $( 1, 5, 9)( 2,12, 7)( 3,10, 8)( 4,11, 6)$ |
| 6A | $6^{2}$ | $6$ | $6$ | $10$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| 6B1 | $6,3,2,1$ | $12$ | $6$ | $8$ | $( 1, 8, 7, 5, 4,11)( 2,10)( 3, 9,12)$ |
| 6B-1 | $6,3,2,1$ | $12$ | $6$ | $8$ | $( 1,11, 4, 5, 7, 8)( 2,10)( 3,12, 9)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B1 | 3B-1 | 3C1 | 3C-1 | 6A | 6B1 | 6B-1 | ||
| Size | 1 | 3 | 3 | 9 | 2 | 4 | 4 | 8 | 8 | 6 | 12 | 12 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B-1 | 3B1 | 3C-1 | 3C1 | 3A | 3B1 | 3B-1 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 2A | 2B | 2B | |
| Type | |||||||||||||
| 72.44.1a | R | ||||||||||||
| 72.44.1b | R | ||||||||||||
| 72.44.1c1 | C | ||||||||||||
| 72.44.1c2 | C | ||||||||||||
| 72.44.1d1 | C | ||||||||||||
| 72.44.1d2 | C | ||||||||||||
| 72.44.2a | R | ||||||||||||
| 72.44.2b1 | C | ||||||||||||
| 72.44.2b2 | C | ||||||||||||
| 72.44.3a | R | ||||||||||||
| 72.44.3b | R | ||||||||||||
| 72.44.6a | R |
Regular extensions
Data not computed