Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $43$ | |
| Group : | $S_3\times A_4$ | |
| CHM label : | $A(4)[x]S(3)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7,10)(2,5,11)(3,6,9), (2,8,11)(3,6,12)(4,7,10), (1,5)(2,10)(4,8)(7,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 12: $A_4$ 18: $S_3\times C_3$ 24: $A_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: $A_4$
Degree 6: None
Low degree siblings
18T31, 18T32, 24T78, 24T83, 36T21, 36T50, 36T51Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 6, 3, 2, 1 $ | $12$ | $6$ | $( 2, 3, 8, 6,11,12)( 4,10, 7)( 5, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 6)( 3,11)( 5, 9)( 8,12)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $4$ | $3$ | $( 2, 8,11)( 3, 6,12)( 4, 7,10)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $4$ | $3$ | $( 2,11, 8)( 3,12, 6)( 4,10, 7)$ |
| $ 6, 3, 2, 1 $ | $12$ | $6$ | $( 2,12,11, 6, 8, 3)( 4, 7,10)( 5, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 2, 3)( 4, 8,12)( 5, 6, 7)( 9,10,11)$ |
| $ 6, 6 $ | $6$ | $6$ | $( 1, 2, 9,10, 5, 6)( 3, 4,11,12, 7, 8)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 2,12)( 3, 7,11)( 4, 5, 6)( 8, 9,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
| $ 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 44] |
| Character table: |
2 3 1 3 1 1 1 3 . 2 . 3 2
3 2 1 1 2 2 1 . 2 1 2 1 2
1a 6a 2a 3a 3b 6b 2b 3c 6c 3d 2c 3e
2P 1a 3a 1a 3b 3a 3b 1a 3d 3e 3c 1a 3e
3P 1a 2a 2a 1a 1a 2a 2b 1a 2c 1a 2c 1a
5P 1a 6b 2a 3b 3a 6a 2b 3d 6c 3c 2c 3e
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 -1 1 1 1 1 1
X.3 1 A -1 -/A -A /A -1 -/A 1 -A 1 1
X.4 1 /A -1 -A -/A A -1 -A 1 -/A 1 1
X.5 1 -/A 1 -A -/A -A 1 -A 1 -/A 1 1
X.6 1 -A 1 -/A -A -/A 1 -/A 1 -A 1 1
X.7 2 . . 2 2 . . -1 -1 -1 2 -1
X.8 2 . . B /B . . /A -1 A 2 -1
X.9 2 . . /B B . . A -1 /A 2 -1
X.10 3 . -3 . . . 1 . -1 . -1 3
X.11 3 . 3 . . . -1 . -1 . -1 3
X.12 6 . . . . . . . 1 . -2 -3
A = -E(3)
= (1-Sqrt(-3))/2 = -b3
B = 2*E(3)^2
= -1-Sqrt(-3) = -1-i3
|