Show commands:
Magma
magma: G := TransitiveGroup(12, 33);
Group action invariants
Degree $n$: | $12$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $33$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $A_5$ | ||
CHM label: | $A_{5}(12)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3,5,7,9)(2,4,6,8,12), (1,11,5)(2,7,9)(3,6,8)(4,12,10) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: None
Degree 6: $\PSL(2,5)$
Low degree siblings
5T4, 6T12, 10T7, 15T5, 20T15, 30T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6}$ | $15$ | $2$ | $6$ | $( 1, 6)( 2, 5)( 3, 4)( 7,12)( 8, 9)(10,11)$ |
3A | $3^{4}$ | $20$ | $3$ | $8$ | $( 1,11, 5)( 2, 7, 9)( 3, 6, 8)( 4,12,10)$ |
5A1 | $5^{2},1^{2}$ | $12$ | $5$ | $8$ | $( 2, 7, 5, 8,11)( 3, 6, 4, 9,10)$ |
5A2 | $5^{2},1^{2}$ | $12$ | $5$ | $8$ | $( 1, 5, 6,10, 8)( 4, 7,11, 9,12)$ |
Malle's constant $a(G)$: $1/6$
magma: ConjugacyClasses(G);
Group invariants
Order: | $60=2^{2} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 60.5 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 5A1 | 5A2 | ||
Size | 1 | 15 | 20 | 12 | 12 | |
2 P | 1A | 1A | 3A | 5A2 | 5A1 | |
3 P | 1A | 2A | 1A | 5A2 | 5A1 | |
5 P | 1A | 2A | 3A | 1A | 1A | |
Type | ||||||
60.5.1a | R | |||||
60.5.3a1 | R | |||||
60.5.3a2 | R | |||||
60.5.4a | R | |||||
60.5.5a | R |
magma: CharacterTable(G);