Properties

Label 12T33
Order \(60\)
n \(12\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No
Group: $A_5$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $33$
Group :  $A_5$
CHM label :  $A_{5}(12)$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,3,5,7,9)(2,4,6,8,12), (1,11,5)(2,7,9)(3,6,8)(4,12,10)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

None

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: None

Degree 4: None

Degree 6: $\PSL(2,5)$

Low degree siblings

5T4, 6T12, 10T7, 15T5, 20T15, 30T9

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 5, 5, 1, 1 $ $12$ $5$ $( 2, 5,11, 7, 8)( 3, 4,10, 6, 9)$
$ 5, 5, 1, 1 $ $12$ $5$ $( 2, 7, 5, 8,11)( 3, 6, 4, 9,10)$
$ 2, 2, 2, 2, 2, 2 $ $15$ $2$ $( 1, 2)( 3,12)( 4, 9)( 5, 8)( 6, 7)(10,11)$
$ 3, 3, 3, 3 $ $20$ $3$ $( 1, 2, 5)( 3, 4,12)( 6,11, 8)( 7,10, 9)$

Group invariants

Order:  $60=2^{2} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  [60, 5]
Character table:   
     2  2  .  .  2  .
     3  1  .  .  .  1
     5  1  1  1  .  .

       1a 5a 5b 2a 3a
    2P 1a 5b 5a 1a 3a
    3P 1a 5b 5a 2a 1a
    5P 1a 1a 1a 2a 3a

X.1     1  1  1  1  1
X.2     3  A *A -1  .
X.3     3 *A  A -1  .
X.4     4 -1 -1  .  1
X.5     5  .  .  1 -1

A = -E(5)-E(5)^4
  = (1-Sqrt(5))/2 = -b5