Show commands: Magma
Group invariants
| Abstract group: | $C_4\times A_4$ |
| |
| Order: | $48=2^{4} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $12$ |
| |
| Transitive number $t$: | $29$ |
| |
| CHM label: | $[1/2.4^{2}]3$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,7)(3,9)(4,10)(6,12)$, $(1,5,9)(2,6,10)(3,7,11)(4,8,12)$, $(1,4,7,10)(2,5,8,11)(3,6,9,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $4$: $C_4$ $6$: $C_6$ $12$: $A_4$, $C_{12}$ $24$: $A_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: None
Degree 6: $C_6$
Low degree siblings
16T57, 24T55, 24T56Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{6}$ | $1$ | $2$ | $6$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| 2B | $2^{4},1^{4}$ | $3$ | $2$ | $4$ | $( 2, 8)( 3, 9)( 5,11)( 6,12)$ |
| 2C | $2^{2},1^{8}$ | $3$ | $2$ | $2$ | $( 1, 7)( 4,10)$ |
| 3A1 | $3^{4}$ | $4$ | $3$ | $8$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| 3A-1 | $3^{4}$ | $4$ | $3$ | $8$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| 4A1 | $4^{3}$ | $1$ | $4$ | $9$ | $( 1,10, 7, 4)( 2,11, 8, 5)( 3,12, 9, 6)$ |
| 4A-1 | $4^{3}$ | $1$ | $4$ | $9$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| 4B1 | $4^{3}$ | $3$ | $4$ | $9$ | $( 1,10, 7, 4)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| 4B-1 | $4^{3}$ | $3$ | $4$ | $9$ | $( 1, 4, 7,10)( 2,11, 8, 5)( 3,12, 9, 6)$ |
| 6A1 | $6^{2}$ | $4$ | $6$ | $10$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| 6A-1 | $6^{2}$ | $4$ | $6$ | $10$ | $( 1,11, 9, 7, 5, 3)( 2,12,10, 8, 6, 4)$ |
| 12A1 | $12$ | $4$ | $12$ | $11$ | $( 1, 8, 3,10, 5,12, 7, 2, 9, 4,11, 6)$ |
| 12A-1 | $12$ | $4$ | $12$ | $11$ | $( 1, 6,11, 4, 9, 2, 7,12, 5,10, 3, 8)$ |
| 12A5 | $12$ | $4$ | $12$ | $11$ | $( 1,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
| 12A-5 | $12$ | $4$ | $12$ | $11$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
Malle's constant $a(G)$: $1/2$
Character table
| 1A | 2A | 2B | 2C | 3A1 | 3A-1 | 4A1 | 4A-1 | 4B1 | 4B-1 | 6A1 | 6A-1 | 12A1 | 12A-1 | 12A5 | 12A-5 | ||
| Size | 1 | 1 | 3 | 3 | 4 | 4 | 1 | 1 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | |
| 2 P | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 2A | 2A | 2A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 6A-1 | 6A1 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 2A | 2A | 4A1 | 4A-1 | 4A1 | 4A-1 | |
| Type | |||||||||||||||||
| 48.31.1a | R | ||||||||||||||||
| 48.31.1b | R | ||||||||||||||||
| 48.31.1c1 | C | ||||||||||||||||
| 48.31.1c2 | C | ||||||||||||||||
| 48.31.1d1 | C | ||||||||||||||||
| 48.31.1d2 | C | ||||||||||||||||
| 48.31.1e1 | C | ||||||||||||||||
| 48.31.1e2 | C | ||||||||||||||||
| 48.31.1f1 | C | ||||||||||||||||
| 48.31.1f2 | C | ||||||||||||||||
| 48.31.1f3 | C | ||||||||||||||||
| 48.31.1f4 | C | ||||||||||||||||
| 48.31.3a | R | ||||||||||||||||
| 48.31.3b | R | ||||||||||||||||
| 48.31.3c1 | C | ||||||||||||||||
| 48.31.3c2 | C |
Regular extensions
Data not computed