Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $29$ | |
| Group : | $C_4\times A_4$ | |
| CHM label : | $[1/2.4^{2}]3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7)(3,9)(4,10)(6,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 4: $C_4$ 6: $C_6$ 12: $A_4$, $C_{12}$ 24: $A_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: None
Degree 6: $C_6$
Low degree siblings
16T57, 24T55, 24T56Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 9)( 6,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 8)( 3, 9)( 5,11)( 6,12)$ |
| $ 12 $ | $4$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
| $ 12 $ | $4$ | $12$ | $( 1, 2, 3,10,11,12, 7, 8, 9, 4, 5, 6)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 3,11)( 2, 4, 6)( 5, 7, 9)( 8,10,12)$ |
| $ 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 4, 4, 4 $ | $3$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3,12, 9, 6)$ |
| $ 4, 4, 4 $ | $3$ | $4$ | $( 1, 4, 7,10)( 2,11, 8, 5)( 3,12, 9, 6)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 5, 9, 7,11, 3)( 2, 6, 4, 8,12,10)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 12 $ | $4$ | $12$ | $( 1, 6, 5, 4, 9, 8, 7,12,11,10, 3, 2)$ |
| $ 12 $ | $4$ | $12$ | $( 1, 6,11,10, 3, 8, 7,12, 5, 4, 9, 2)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 4, 4, 4 $ | $1$ | $4$ | $( 1,10, 7, 4)( 2,11, 8, 5)( 3,12, 9, 6)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 31] |
| Character table: |
2 4 4 4 2 2 2 2 4 4 4 2 2 2 2 4 4
3 1 . . 1 1 1 1 1 . . 1 1 1 1 1 1
1a 2a 2b 12a 12b 6a 3a 4a 4b 4c 6b 3b 12c 12d 2c 4d
2P 1a 1a 1a 6a 6a 3b 3b 2c 2c 2c 3a 3a 6b 6b 1a 2c
3P 1a 2a 2b 4a 4d 2c 1a 4d 4c 4b 2c 1a 4a 4d 2c 4a
5P 1a 2a 2b 12c 12d 6b 3b 4a 4b 4c 6a 3a 12a 12b 2c 4d
7P 1a 2a 2b 12b 12a 6a 3a 4d 4c 4b 6b 3b 12d 12c 2c 4a
11P 1a 2a 2b 12d 12c 6b 3b 4d 4c 4b 6a 3a 12b 12a 2c 4a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 -1
X.3 1 -1 1 A -A -1 1 -A A -A -1 1 A -A -1 A
X.4 1 -1 1 -A A -1 1 A -A A -1 1 -A A -1 -A
X.5 1 -1 1 B -B /C -/C -A A -A C -C -/B /B -1 A
X.6 1 -1 1 -/B /B C -C -A A -A /C -/C B -B -1 A
X.7 1 -1 1 /B -/B C -C A -A A /C -/C -B B -1 -A
X.8 1 -1 1 -B B /C -/C A -A A C -C /B -/B -1 -A
X.9 1 1 1 C C -/C -/C -1 -1 -1 -C -C /C /C 1 -1
X.10 1 1 1 /C /C -C -C -1 -1 -1 -/C -/C C C 1 -1
X.11 1 1 1 -/C -/C -C -C 1 1 1 -/C -/C -C -C 1 1
X.12 1 1 1 -C -C -/C -/C 1 1 1 -C -C -/C -/C 1 1
X.13 3 -1 -1 . . . . -3 1 1 . . . . 3 -3
X.14 3 -1 -1 . . . . 3 -1 -1 . . . . 3 3
X.15 3 1 -1 . . . . D A -A . . . . -3 -D
X.16 3 1 -1 . . . . -D -A A . . . . -3 D
A = -E(4)
= -Sqrt(-1) = -i
B = -E(12)^7
C = -E(3)
= (1-Sqrt(-3))/2 = -b3
D = -3*E(4)
= -3*Sqrt(-1) = -3i
|