Show commands:
Magma
magma: G := TransitiveGroup(10, 16);
Group action invariants
Degree $n$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $(C_2^4 : C_5) : C_2$ | ||
CHM label: | $1/2[2^{5}]D(5)$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,9)(2,8)(3,7)(4,6)(5,10), (1,3,5,7,9)(2,4,6,8,10), (2,7)(5,10) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $10$: $D_{5}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: $D_{5}$
Low degree siblings
10T15 x 3, 10T16 x 2, 16T415, 20T38 x 6, 20T39, 20T43 x 3, 20T45 x 3, 32T2132, 40T143 x 3, 40T144 x 3, 40T145 x 6, 40T146Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 4, 9)( 5,10)$ |
$ 2, 2, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3, 8)( 5,10)$ |
$ 4, 2, 2, 1, 1 $ | $20$ | $4$ | $( 2, 5, 7,10)( 3, 4)( 8, 9)$ |
$ 4, 2, 2, 1, 1 $ | $20$ | $4$ | $( 2, 5)( 3, 4, 8, 9)( 7,10)$ |
$ 2, 2, 2, 2, 1, 1 $ | $5$ | $2$ | $( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
$ 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1, 2)( 3, 5)( 4, 9)( 6, 7)( 8,10)$ |
$ 5, 5 $ | $32$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)$ |
$ 4, 4, 2 $ | $20$ | $4$ | $( 1, 2, 6, 7)( 3, 5, 8,10)( 4, 9)$ |
$ 5, 5 $ | $32$ | $5$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $160=2^{5} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 160.234 | magma: IdentifyGroup(G);
|
Character table: |
2 5 5 5 3 3 5 3 . 3 . 5 1 . . . . . . 1 . 1 1a 2a 2b 4a 4b 2c 2d 5a 4c 5b 2P 1a 1a 1a 2b 2a 1a 1a 5b 2c 5a 3P 1a 2a 2b 4a 4b 2c 2d 5b 4c 5a 5P 1a 2a 2b 4a 4b 2c 2d 1a 4c 1a X.1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 1 -1 -1 1 -1 1 -1 1 X.3 2 2 2 . . 2 . A . *A X.4 2 2 2 . . 2 . *A . A X.5 5 -3 1 -1 1 1 1 . -1 . X.6 5 -3 1 1 -1 1 -1 . 1 . X.7 5 1 -3 -1 1 1 -1 . 1 . X.8 5 1 -3 1 -1 1 1 . -1 . X.9 5 1 1 -1 -1 -3 1 . 1 . X.10 5 1 1 1 1 -3 -1 . -1 . A = E(5)^2+E(5)^3 = (-1-Sqrt(5))/2 = -1-b5 |
magma: CharacterTable(G);