Learn more

Refine search


Results (1-50 of 1915 matches)

Next   Download to          
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
15.a5 15.a \( 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -10, -10]$ \(y^2+xy+y=x^3+x^2-10x-10\)
15.a6 15.a \( 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -5, 2]$ \(y^2+xy+y=x^3+x^2-5x+2\)
15.a8 15.a \( 3 \cdot 5 \) $0$ $\Z/8\Z$ $1$ $[1, 1, 1, 35, -28]$ \(y^2+xy+y=x^3+x^2+35x-28\)
21.a3 21.a \( 3 \cdot 7 \) $0$ $\Z/8\Z$ $1$ $[1, 0, 0, -39, 90]$ \(y^2+xy=x^3-39x+90\)
21.a5 21.a \( 3 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 0, 0, -4, -1]$ \(y^2+xy=x^3-4x-1\)
24.a4 24.a \( 2^{3} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[0, -1, 0, -4, 4]$ \(y^2=x^3-x^2-4x+4\)
42.a4 42.a \( 2 \cdot 3 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -84, 261]$ \(y^2+xy+y=x^3+x^2-84x+261\)
42.a5 42.a \( 2 \cdot 3 \cdot 7 \) $0$ $\Z/8\Z$ $1$ $[1, 1, 1, -4, 5]$ \(y^2+xy+y=x^3+x^2-4x+5\)
48.a3 48.a \( 2^{4} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[0, 1, 0, -24, 36]$ \(y^2=x^3+x^2-24x+36\)
48.a6 48.a \( 2^{4} \cdot 3 \) $0$ $\Z/8\Z$ $1$ $[0, 1, 0, 16, 180]$ \(y^2=x^3+x^2+16x+180\)
102.c4 102.c \( 2 \cdot 3 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 0, 0, -114, -396]$ \(y^2+xy=x^3-114x-396\)
102.c5 102.c \( 2 \cdot 3 \cdot 17 \) $0$ $\Z/8\Z$ $1$ $[1, 0, 0, -34, 68]$ \(y^2+xy=x^3-34x+68\)
120.b4 120.b \( 2^{3} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[0, 1, 0, -20, 0]$ \(y^2=x^3+x^2-20x\)
195.a4 195.a \( 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 0, 0, -520, -4225]$ \(y^2+xy=x^3-520x-4225\)
195.a5 195.a \( 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 0, 0, -115, 392]$ \(y^2+xy=x^3-115x+392\)
210.c5 210.c \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -70, -205]$ \(y^2+xy+y=x^3+x^2-70x-205\)
210.e4 210.e \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/8\Z$ $1$ $[1, 0, 0, -15070, 710612]$ \(y^2+xy=x^3-15070x+710612\)
210.e5 210.e \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 0, 0, -7550, -247500]$ \(y^2+xy=x^3-7550x-247500\)
210.e7 210.e \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/8\Z$ $1$ $[1, 0, 0, 210, 900]$ \(y^2+xy=x^3+210x+900\)
231.a3 231.a \( 3 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -39, 36]$ \(y^2+xy+y=x^3+x^2-39x+36\)
240.c2 240.c \( 2^{4} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[0, -1, 0, -200, 1152]$ \(y^2=x^3-x^2-200x+1152\)
240.d2 240.d \( 2^{4} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[0, 1, 0, -2160, 37908]$ \(y^2=x^3+x^2-2160x+37908\)
240.d5 240.d \( 2^{4} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[0, 1, 0, -160, 308]$ \(y^2=x^3+x^2-160x+308\)
330.d5 330.d \( 2 \cdot 3 \cdot 5 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -1025, 767]$ \(y^2+xy+y=x^3+x^2-1025x+767\)
330.e4 330.e \( 2 \cdot 3 \cdot 5 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 0, 0, -75, 225]$ \(y^2+xy=x^3-75x+225\)
336.a2 336.a \( 2^{4} \cdot 3 \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $1.492598417$ $[0, -1, 0, -784, 8704]$ \(y^2=x^3-x^2-784x+8704\)
336.d2 336.d \( 2^{4} \cdot 3 \cdot 7 \) $0$ $\Z/8\Z$ $1$ $[0, 1, 0, -14624, 669300]$ \(y^2=x^3+x^2-14624x+669300\)
336.d3 336.d \( 2^{4} \cdot 3 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[0, 1, 0, -1664, -9804]$ \(y^2=x^3+x^2-1664x-9804\)
390.f5 390.f \( 2 \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -65, 47]$ \(y^2+xy+y=x^3+x^2-65x+47\)
429.b4 429.b \( 3 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $2.115453196$ $[1, 0, 0, -429, 3384]$ \(y^2+xy=x^3-429x+3384\)
510.e4 510.e \( 2 \cdot 3 \cdot 5 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -1440, 16305]$ \(y^2+xy+y=x^3+x^2-1440x+16305\)
510.e5 510.e \( 2 \cdot 3 \cdot 5 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -1360, 18737]$ \(y^2+xy+y=x^3+x^2-1360x+18737\)
609.a4 609.a \( 3 \cdot 7 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $3.513460239$ $[1, 1, 1, -12789, 551346]$ \(y^2+xy+y=x^3+x^2-12789x+551346\)
663.a3 663.a \( 3 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $2.975812071$ $[1, 1, 1, -544, 4496]$ \(y^2+xy+y=x^3+x^2-544x+4496\)
690.k4 690.k \( 2 \cdot 3 \cdot 5 \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 0, 0, -6900, 220032]$ \(y^2+xy=x^3-6900x+220032\)
690.k5 690.k \( 2 \cdot 3 \cdot 5 \cdot 23 \) $0$ $\Z/8\Z$ $1$ $[1, 0, 0, -420, 3600]$ \(y^2+xy=x^3-420x+3600\)
714.f4 714.f \( 2 \cdot 3 \cdot 7 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -90724, 2605541]$ \(y^2+xy+y=x^3+x^2-90724x+2605541\)
714.f5 714.f \( 2 \cdot 3 \cdot 7 \cdot 17 \) $0$ $\Z/8\Z$ $1$ $[1, 1, 1, -70244, 7127525]$ \(y^2+xy+y=x^3+x^2-70244x+7127525\)
759.b5 759.b \( 3 \cdot 11 \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $2.983073350$ $[1, 0, 0, -374, -2541]$ \(y^2+xy=x^3-374x-2541\)
816.b2 816.b \( 2^{4} \cdot 3 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $3.826981769$ $[0, -1, 0, -27744, 1787904]$ \(y^2=x^3-x^2-27744x+1787904\)
840.d3 840.d \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $1.098298981$ $[0, -1, 0, -180, 900]$ \(y^2=x^3-x^2-180x+900\)
840.f3 840.f \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[0, -1, 0, -740, 7812]$ \(y^2=x^3-x^2-740x+7812\)
840.j4 840.j \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[0, 1, 0, -420, 3168]$ \(y^2=x^3+x^2-420x+3168\)
930.o4 930.o \( 2 \cdot 3 \cdot 5 \cdot 31 \) $0$ $\Z/8\Z$ $1$ $[1, 0, 0, -3700, 67232]$ \(y^2+xy=x^3-3700x+67232\)
930.o5 930.o \( 2 \cdot 3 \cdot 5 \cdot 31 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 0, 0, -1220, -15600]$ \(y^2+xy=x^3-1220x-15600\)
966.g2 966.g \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/8\Z$ $2.429046614$ $[1, 1, 1, -17714, 900047]$ \(y^2+xy+y=x^3+x^2-17714x+900047\)
966.g4 966.g \( 2 \cdot 3 \cdot 7 \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $1.214523307$ $[1, 1, 1, -1154, 12431]$ \(y^2+xy+y=x^3+x^2-1154x+12431\)
1110.k4 1110.k \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -21325, 1187267]$ \(y^2+xy+y=x^3+x^2-21325x+1187267\)
1122.e4 1122.e \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $1.893763184$ $[1, 1, 1, -1564, -23299]$ \(y^2+xy+y=x^3+x^2-1564x-23299\)
1155.e3 1155.e \( 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $1.700180605$ $[1, 1, 1, -270, 1482]$ \(y^2+xy+y=x^3+x^2-270x+1482\)
Next   Download to