Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
15.a5 |
15a1 |
15.a |
15a |
$8$ |
$16$ |
\( 3 \cdot 5 \) |
\( 3^{4} \cdot 5^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.96.0.3 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$1$ |
$-0.402277$ |
$111284641/50625$ |
$[1, 1, 1, -10, -10]$ |
\(y^2+xy+y=x^3+x^2-10x-10\) |
15.a6 |
15a3 |
15.a |
15a |
$8$ |
$16$ |
\( 3 \cdot 5 \) |
\( 3^{2} \cdot 5^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
16.96.0.7 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$2$ |
$-0.748851$ |
$13997521/225$ |
$[1, 1, 1, -5, 2]$ |
\(y^2+xy+y=x^3+x^2-5x+2\) |
15.a8 |
15a4 |
15.a |
15a |
$8$ |
$16$ |
\( 3 \cdot 5 \) |
\( - 3^{2} \cdot 5^{8} \) |
$0$ |
$\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.96.0.99 |
2B |
$1$ |
$1$ |
|
$6$ |
$2$ |
$-0.055704$ |
$4733169839/3515625$ |
$[1, 1, 1, 35, -28]$ |
\(y^2+xy+y=x^3+x^2+35x-28\) |
21.a3 |
21a3 |
21.a |
21a |
$6$ |
$8$ |
\( 3 \cdot 7 \) |
\( 3^{8} \cdot 7 \) |
$0$ |
$\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.48.0.159 |
2B |
$1$ |
$1$ |
|
$6$ |
$2$ |
$-0.272368$ |
$6570725617/45927$ |
$[1, 0, 0, -39, 90]$ |
\(y^2+xy=x^3-39x+90\) |
21.a5 |
21a1 |
21.a |
21a |
$6$ |
$8$ |
\( 3 \cdot 7 \) |
\( 3^{4} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.48.0.24 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$1$ |
$-0.618942$ |
$7189057/3969$ |
$[1, 0, 0, -4, -1]$ |
\(y^2+xy=x^3-4x-1\) |
24.a4 |
24a1 |
24.a |
24a |
$6$ |
$8$ |
\( 2^{3} \cdot 3 \) |
\( 2^{8} \cdot 3^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.42 |
2Cs |
$1$ |
$1$ |
|
$7$ |
$1$ |
$-0.645352$ |
$35152/9$ |
$[0, -1, 0, -4, 4]$ |
\(y^2=x^3-x^2-4x+4\) |
42.a4 |
42a2 |
42.a |
42a |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 7 \) |
\( 2^{4} \cdot 3^{4} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.96.0.37 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$8$ |
$-0.157472$ |
$65597103937/63504$ |
$[1, 1, 1, -84, 261]$ |
\(y^2+xy+y=x^3+x^2-84x+261\) |
42.a5 |
42a1 |
42.a |
42a |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 7 \) |
\( - 2^{8} \cdot 3^{2} \cdot 7 \) |
$0$ |
$\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
16.96.0.98 |
2B |
$1$ |
$1$ |
|
$7$ |
$4$ |
$-0.504046$ |
$-7189057/16128$ |
$[1, 1, 1, -4, 5]$ |
\(y^2+xy+y=x^3+x^2-4x+5\) |
48.a3 |
48a3 |
48.a |
48a |
$6$ |
$8$ |
\( 2^{4} \cdot 3 \) |
\( 2^{10} \cdot 3^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.34 |
2Cs |
$1$ |
$1$ |
|
$7$ |
$4$ |
$-0.298779$ |
$1556068/81$ |
$[0, 1, 0, -24, 36]$ |
\(y^2=x^3+x^2-24x+36\) |
48.a6 |
48a6 |
48.a |
48a |
$6$ |
$8$ |
\( 2^{4} \cdot 3 \) |
\( - 2^{11} \cdot 3^{8} \) |
$0$ |
$\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.155 |
2B |
$1$ |
$1$ |
|
$7$ |
$8$ |
$0.047795$ |
$207646/6561$ |
$[0, 1, 0, 16, 180]$ |
\(y^2=x^3+x^2+16x+180\) |
102.c4 |
102b2 |
102.c |
102b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{4} \cdot 3^{8} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.96.0.38 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$32$ |
$0.153931$ |
$163936758817/30338064$ |
$[1, 0, 0, -114, -396]$ |
\(y^2+xy=x^3-114x-396\) |
102.c5 |
102b1 |
102.c |
102b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{8} \cdot 3^{4} \cdot 17 \) |
$0$ |
$\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
16.96.0.97 |
2B |
$1$ |
$1$ |
|
$7$ |
$16$ |
$-0.192642$ |
$4354703137/352512$ |
$[1, 0, 0, -34, 68]$ |
\(y^2+xy=x^3-34x+68\) |
120.b4 |
120a2 |
120.b |
120a |
$6$ |
$8$ |
\( 2^{3} \cdot 3 \cdot 5 \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.26 |
2Cs |
$1$ |
$1$ |
|
$7$ |
$16$ |
$-0.213148$ |
$3631696/2025$ |
$[0, 1, 0, -20, 0]$ |
\(y^2=x^3+x^2-20x\) |
195.a4 |
195a3 |
195.a |
195a |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13 \) |
\( 3^{4} \cdot 5^{4} \cdot 13^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.48.0.3 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$96$ |
$0.496270$ |
$15551989015681/1445900625$ |
$[1, 0, 0, -520, -4225]$ |
\(y^2+xy=x^3-520x-4225\) |
195.a5 |
195a2 |
195.a |
195a |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13 \) |
\( 3^{8} \cdot 5^{2} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.48.0.28 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$48$ |
$0.149696$ |
$168288035761/27720225$ |
$[1, 0, 0, -115, 392]$ |
\(y^2+xy=x^3-115x+392\) |
210.c5 |
210c2 |
210.c |
210c |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.48.0.25 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$64$ |
$0.043610$ |
$37966934881/8643600$ |
$[1, 1, 1, -70, -205]$ |
\(y^2+xy+y=x^3+x^2-70x-205\) |
210.e4 |
210e4 |
210.e |
210e |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \) |
\( 2^{4} \cdot 3^{16} \cdot 5^{2} \cdot 7 \) |
$0$ |
$\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
16.96.0.95 |
2B |
$1$ |
$1$ |
|
$6$ |
$512$ |
$1.101282$ |
$378499465220294881/120530818800$ |
$[1, 0, 0, -15070, 710612]$ |
\(y^2+xy=x^3-15070x+710612\) |
210.e5 |
210e3 |
210.e |
210e |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.96.0.2 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$512$ |
$1.101282$ |
$47595748626367201/1215506250000$ |
$[1, 0, 0, -7550, -247500]$ |
\(y^2+xy=x^3-7550x-247500\) |
210.e7 |
210e1 |
210.e |
210e |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \) |
\( - 2^{16} \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
$0$ |
$\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
16.96.0.95 |
2B |
$1$ |
$1$ |
|
$7$ |
$128$ |
$0.408135$ |
$1023887723039/928972800$ |
$[1, 0, 0, 210, 900]$ |
\(y^2+xy=x^3+210x+900\) |
231.a3 |
231a2 |
231.a |
231a |
$6$ |
$8$ |
\( 3 \cdot 7 \cdot 11 \) |
\( 3^{2} \cdot 7^{4} \cdot 11^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.24.0.5 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$40$ |
$-0.070357$ |
$6570725617/2614689$ |
$[1, 1, 1, -39, 36]$ |
\(y^2+xy+y=x^3+x^2-39x+36\) |
240.c2 |
240a3 |
240.c |
240a |
$6$ |
$8$ |
\( 2^{4} \cdot 3 \cdot 5 \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.27 |
2Cs |
$1$ |
$1$ |
|
$7$ |
$64$ |
$0.133425$ |
$868327204/5625$ |
$[0, -1, 0, -200, 1152]$ |
\(y^2=x^3-x^2-200x+1152\) |
240.d2 |
240d5 |
240.d |
240d |
$8$ |
$16$ |
\( 2^{4} \cdot 3 \cdot 5 \) |
\( 2^{12} \cdot 3^{8} \cdot 5^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.41 |
2Cs |
$1$ |
$1$ |
|
$7$ |
$128$ |
$0.637444$ |
$272223782641/164025$ |
$[0, 1, 0, -2160, 37908]$ |
\(y^2=x^3+x^2-2160x+37908\) |
240.d5 |
240d4 |
240.d |
240d |
$8$ |
$16$ |
\( 2^{4} \cdot 3 \cdot 5 \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.1 |
2Cs |
$1$ |
$1$ |
|
$7$ |
$64$ |
$0.290870$ |
$111284641/50625$ |
$[0, 1, 0, -160, 308]$ |
\(y^2=x^3+x^2-160x+308\) |
330.d5 |
330c2 |
330.d |
330c |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{2} \cdot 11^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.24.0.5 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$384$ |
$0.768613$ |
$119102750067601/68309049600$ |
$[1, 1, 1, -1025, 767]$ |
\(y^2+xy+y=x^3+x^2-1025x+767\) |
330.e4 |
330b2 |
330.e |
330b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 11^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.24.0.5 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$64$ |
$0.006941$ |
$46694890801/3920400$ |
$[1, 0, 0, -75, 225]$ |
\(y^2+xy=x^3-75x+225\) |
336.a2 |
336e4 |
336.a |
336e |
$6$ |
$8$ |
\( 2^{4} \cdot 3 \cdot 7 \) |
\( 2^{12} \cdot 3^{2} \cdot 7^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.25 |
2Cs |
$1.492598417$ |
$1$ |
|
$19$ |
$128$ |
$0.420779$ |
$13027640977/21609$ |
$[0, -1, 0, -784, 8704]$ |
\(y^2=x^3-x^2-784x+8704\) |
336.d2 |
336d5 |
336.d |
336d |
$6$ |
$8$ |
\( 2^{4} \cdot 3 \cdot 7 \) |
\( 2^{13} \cdot 3^{4} \cdot 7^{8} \) |
$0$ |
$\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.157 |
2B |
$1$ |
$1$ |
|
$7$ |
$768$ |
$1.228823$ |
$84448510979617/933897762$ |
$[0, 1, 0, -14624, 669300]$ |
\(y^2=x^3+x^2-14624x+669300\) |
336.d3 |
336d4 |
336.d |
336d |
$6$ |
$8$ |
\( 2^{4} \cdot 3 \cdot 7 \) |
\( 2^{14} \cdot 3^{8} \cdot 7^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.33 |
2Cs |
$1$ |
$1$ |
|
$7$ |
$384$ |
$0.882248$ |
$124475734657/63011844$ |
$[0, 1, 0, -1664, -9804]$ |
\(y^2=x^3+x^2-1664x-9804\) |
390.f5 |
390b2 |
390.f |
390b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 13 \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{4} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.24.0.5 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$128$ |
$0.070926$ |
$30400540561/15210000$ |
$[1, 1, 1, -65, 47]$ |
\(y^2+xy+y=x^3+x^2-65x+47\) |
429.b4 |
429b2 |
429.b |
429b |
$6$ |
$8$ |
\( 3 \cdot 11 \cdot 13 \) |
\( 3^{4} \cdot 11^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.24.0.5 |
2Cs |
$2.115453196$ |
$1$ |
|
$12$ |
$128$ |
$0.194522$ |
$8732907467857/1656369$ |
$[1, 0, 0, -429, 3384]$ |
\(y^2+xy=x^3-429x+3384\) |
510.e4 |
510e3 |
510.e |
510e |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.96.0.7 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$512$ |
$0.793592$ |
$330240275458561/67652010000$ |
$[1, 1, 1, -1440, 16305]$ |
\(y^2+xy+y=x^3+x^2-1440x+16305\) |
510.e5 |
510e2 |
510.e |
510e |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 17 \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
16.96.0.8 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$256$ |
$0.447019$ |
$278202094583041/16646400$ |
$[1, 1, 1, -1360, 18737]$ |
\(y^2+xy+y=x^3+x^2-1360x+18737\) |
609.a4 |
609b2 |
609.a |
609b |
$6$ |
$8$ |
\( 3 \cdot 7 \cdot 29 \) |
\( 3^{6} \cdot 7^{4} \cdot 29^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.24.0.5 |
2Cs |
$3.513460239$ |
$1$ |
|
$10$ |
$768$ |
$0.944088$ |
$231331938231569617/1472026689$ |
$[1, 1, 1, -12789, 551346]$ |
\(y^2+xy+y=x^3+x^2-12789x+551346\) |
663.a3 |
663b2 |
663.a |
663b |
$6$ |
$8$ |
\( 3 \cdot 13 \cdot 17 \) |
\( 3^{4} \cdot 13^{4} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.48.0.27 |
2Cs |
$2.975812071$ |
$1$ |
|
$10$ |
$256$ |
$0.462009$ |
$17806161424897/668584449$ |
$[1, 1, 1, -544, 4496]$ |
\(y^2+xy+y=x^3+x^2-544x+4496\) |
690.k4 |
690k2 |
690.k |
690k |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 23 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 23^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.48.0.24 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$768$ |
$0.806443$ |
$36330796409313601/428490000$ |
$[1, 0, 0, -6900, 220032]$ |
\(y^2+xy=x^3-6900x+220032\) |
690.k5 |
690k1 |
690.k |
690k |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 23 \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{2} \cdot 23 \) |
$0$ |
$\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.48.0.159 |
2B |
$1$ |
$1$ |
|
$7$ |
$384$ |
$0.459870$ |
$-8194759433281/965779200$ |
$[1, 0, 0, -420, 3600]$ |
\(y^2+xy=x^3-420x+3600\) |
714.f4 |
714g2 |
714.f |
714g |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \) |
\( 2^{12} \cdot 3^{8} \cdot 7^{8} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.96.0.37 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$7680$ |
$1.885983$ |
$82582985847542515777/44772582831427584$ |
$[1, 1, 1, -90724, 2605541]$ |
\(y^2+xy+y=x^3+x^2-90724x+2605541\) |
714.f5 |
714g1 |
714.f |
714g |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \) |
\( 2^{24} \cdot 3^{4} \cdot 7^{4} \cdot 17 \) |
$0$ |
$\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
16.96.0.98 |
2B |
$1$ |
$1$ |
|
$7$ |
$3840$ |
$1.539408$ |
$38331145780597164097/55468445663232$ |
$[1, 1, 1, -70244, 7127525]$ |
\(y^2+xy+y=x^3+x^2-70244x+7127525\) |
759.b5 |
759b2 |
759.b |
759b |
$6$ |
$8$ |
\( 3 \cdot 11 \cdot 23 \) |
\( 3^{4} \cdot 11^{4} \cdot 23^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.24.0.5 |
2Cs |
$2.983073350$ |
$1$ |
|
$10$ |
$256$ |
$0.421960$ |
$5786435182177/627352209$ |
$[1, 0, 0, -374, -2541]$ |
\(y^2+xy=x^3-374x-2541\) |
816.b2 |
816h3 |
816.b |
816h |
$6$ |
$8$ |
\( 2^{4} \cdot 3 \cdot 17 \) |
\( 2^{14} \cdot 3^{4} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.35 |
2Cs |
$3.826981769$ |
$1$ |
|
$11$ |
$1536$ |
$1.193651$ |
$576615941610337/27060804$ |
$[0, -1, 0, -27744, 1787904]$ |
\(y^2=x^3-x^2-27744x+1787904\) |
840.d3 |
840f2 |
840.d |
840f |
$6$ |
$8$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.24.0.5 |
2Cs |
$1.098298981$ |
$1$ |
|
$21$ |
$256$ |
$0.239768$ |
$2533446736/275625$ |
$[0, -1, 0, -180, 900]$ |
\(y^2=x^3-x^2-180x+900\) |
840.f3 |
840g2 |
840.f |
840g |
$6$ |
$8$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.25 |
2Cs |
$1$ |
$1$ |
|
$7$ |
$512$ |
$0.524602$ |
$175293437776/4862025$ |
$[0, -1, 0, -740, 7812]$ |
\(y^2=x^3-x^2-740x+7812\) |
840.j4 |
840j2 |
840.j |
840j |
$6$ |
$8$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.24.0.5 |
2Cs |
$1$ |
$1$ |
|
$7$ |
$256$ |
$0.288763$ |
$32082281296/99225$ |
$[0, 1, 0, -420, 3168]$ |
\(y^2=x^3+x^2-420x+3168\) |
930.o4 |
930o4 |
930.o |
930o |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 31 \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{8} \cdot 31 \) |
$0$ |
$\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.48.0.159 |
2B |
$1$ |
$1$ |
|
$6$ |
$2048$ |
$1.035252$ |
$5601911201812801/1271193750000$ |
$[1, 0, 0, -3700, 67232]$ |
\(y^2+xy=x^3-3700x+67232\) |
930.o5 |
930o2 |
930.o |
930o |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 31 \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 31^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.48.0.24 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$1024$ |
$0.688679$ |
$200828550012481/12454560000$ |
$[1, 0, 0, -1220, -15600]$ |
\(y^2+xy=x^3-1220x-15600\) |
966.g2 |
966g4 |
966.g |
966g |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 7 \cdot 23 \) |
\( 2^{4} \cdot 3^{2} \cdot 7^{8} \cdot 23 \) |
$1$ |
$\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.48.0.159 |
2B |
$2.429046614$ |
$1$ |
|
$12$ |
$2048$ |
$1.069401$ |
$614716917569296417/19093020912$ |
$[1, 1, 1, -17714, 900047]$ |
\(y^2+xy+y=x^3+x^2-17714x+900047\) |
966.g4 |
966g2 |
966.g |
966g |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 7 \cdot 23 \) |
\( 2^{8} \cdot 3^{4} \cdot 7^{4} \cdot 23^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.48.0.24 |
2Cs |
$1.214523307$ |
$1$ |
|
$18$ |
$1024$ |
$0.722827$ |
$169967019783457/26337394944$ |
$[1, 1, 1, -1154, 12431]$ |
\(y^2+xy+y=x^3+x^2-1154x+12431\) |
1110.k4 |
1110k2 |
1110.k |
1110k |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 37 \) |
\( 2^{12} \cdot 3^{6} \cdot 5^{4} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.24.0.5 |
2Cs |
$1$ |
$1$ |
|
$6$ |
$3456$ |
$1.260246$ |
$1072487167529950801/2554882560000$ |
$[1, 1, 1, -21325, 1187267]$ |
\(y^2+xy+y=x^3+x^2-21325x+1187267\) |
1122.e4 |
1122e2 |
1122.e |
1122e |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 11 \cdot 17 \) |
\( 2^{8} \cdot 3^{2} \cdot 11^{2} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.48.0.27 |
2Cs |
$1.893763184$ |
$1$ |
|
$16$ |
$1024$ |
$0.744782$ |
$423108074414017/23284318464$ |
$[1, 1, 1, -1564, -23299]$ |
\(y^2+xy+y=x^3+x^2-1564x-23299\) |
1155.e3 |
1155e2 |
1155.e |
1155e |
$6$ |
$8$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.24.0.5 |
2Cs |
$1.700180605$ |
$1$ |
|
$14$ |
$512$ |
$0.320720$ |
$2177286259681/161417025$ |
$[1, 1, 1, -270, 1482]$ |
\(y^2+xy+y=x^3+x^2-270x+1482\) |